### Forums

### Blogroll

### Search

### Archives

### Categories

- Algo Design Language (5)
- Algo Strategy Engine (2)
- Algorithmic Trading (9)
- Alternative Investment (1)
- ARFIMA (1)
- ARMA (4)
- Asian markets (2)
- Binary Options (1)
- Black Noise (2)
- CAPM (1)
- Cointegration (6)
- Commodity Futures (1)
- Correlation (1)
- Correlation Dimension (1)
- Correlation Integral (1)
- CrashMetrics (1)
- Day Trading (1)
- Derivatives (3)
- Direction Prediction (4)
- Dispersion (1)
- Econometrics (7)
- Economics (1)
- Econophysics (2)
- Education (1)
- Emerging Markets (1)
- Equity Curve (2)
- Equity Futures (1)
- ETFs (3)
- Fat Tails (3)
- FIGARCH (2)
- Financial Engineering (5)
- Fixed Income Futures (1)
- Forecasting (17)
- Fourier Transforms (1)
- Fractional Brownian Motion (2)
- Fractional Cointegration (2)
- Fractional Integration (3)
- Futures (7)
- GARCH (1)
- Genetic Programming (1)
- Graduate Programs (1)
- Granger Causality (1)
- Hedge Funds (2)
- Henon Attractor (1)
- High Frequency Finance (5)
- High Frequency Trading (7)
- Hurst Exponent (2)
- Hybrid Products (1)
- Interactive Brokers (1)
- Interest Rate Models (1)
- Jobs (1)
- Johansen (1)
- Julia (2)
- Kalman Filter (2)
- Kelly Criterion (1)
- Latency (1)
- Logistic Attractor (1)
- Logit Regression (2)
- Long Memory (4)
- Machine Learning (4)
- Market Efficiency (2)
- Market Microstructure (4)
- Market Timing (3)
- Markov Model (1)
- Markov State Models (1)
- Mathematca (1)
- Mathematica (6)
- Matlab (8)
- Mean Reversion (3)
- Metals (1)
- Model Review (1)
- Modeling (4)
- Momentum (1)
- Money Management (3)
- Multifactor Models (2)
- Natural Gas Futures (1)
- Nearest Neighbor (1)
- Neural Networks (1)
- Nonlinear Classification (2)
- Nonlinear Dynamics (2)
- Optimal f (1)
- Options (6)
- Order Flow (2)
- Pairs Trading (5)
- Pink Noise (2)
- Portfolio Management (1)
- Principal Components Analysis (1)
- Programming (2)
- Purchasing Power Parity (1)
- Quant/Traders (1)
- Random Forrests (1)
- Recruitment (1)
- REGARCH (3)
- Regime Shifts (4)
- Regime Switching (2)
- Regression (1)
- Risk Management (2)
- S&P500 Index (8)
- Scalping (2)
- Signal Processing (1)
- Spline Methods (1)
- Spread Trading (2)
- Statistical Arbitrage (7)
- Stochastic Differential Equations (1)
- Stock Market (1)
- Strange Attractor (1)
- Strategy Development (2)
- Support Vector Machines (1)
- Systematic Strategies (4)
- Time Series Modeling (5)
- Toxic Flow (2)
- TradeStation (3)
- Trading (8)
- Trading Technologies (3)
- Uncategorized (9)
- Unit Roots (1)
- Van Tharp (1)
- VIX Index (9)
- Volatility ETF Strategy (6)
- Volatility Modeling (23)
- volatility sign prediction forecasting Engle (3)
- White Noise (3)
- Yield Curve Modeling (1)

### Tag Cloud

ADL ARFIMA ARMA Models Black Noise Direction Prediction E-min ETFs Financial engineering Forecasting Fractional Brownian Motion Fractional Cointegration Fractional Integration Futures GARCH High Frequency Trading Jump Diffusion Kalman Filter Kurtosis Long Memory Machine Learning Market Microstructure Market Timing Mathematica MultiFactor Models Natural Gas Option Pricing Options Pairs Trading REGARCH Regime Shifts Robustness S&P500 Index Scalping Skewness Smile Statistical Arbitrage Stochastic Volatility Strategy Toxic Flow Tradestation Trading VIX Volatility Volatility Dynamics White Noise

# Tag Archives: Direction Prediction

## Forecasting Financial Markets – Part 1: Time Series Analysis

The presentation in this post covers a number of important topics in forecasting, including: Stationary processes and random walks Unit roots and autocorrelation ARMA models Seasonality Model testing Forecasting Dickey-Fuller and Phillips-Perron tests for unit roots Also included are a number … Continue reading

Posted in ARMA, Econometrics, Forecasting, Purchasing Power Parity, Time Series Modeling, Unit Roots, White Noise
Tagged ARMA Models, Box Jenkins, Direction Prediction, Forecasting, Purchasing Power Parity, Time Series Analysis
Comments Off

## Can Machine Learning Techniques Be Used To Predict Market Direction? The 1,000,000 Model Test.

During the 1990′s the advent of Neural Networks unleashed a torrent of research on their applications in financial markets, accompanied by some rather extravagant claims about their predicative abilities. Sadly, much of the research proved to be sub-standard and the … Continue reading

Posted in Direction Prediction, Forecasting, Logit Regression, Machine Learning, Matlab, Modeling, Nearest Neighbor, Neural Networks, Nonlinear Classification, Nonlinear Dynamics, Random Forrests, S&P500 Index, Support Vector Machines
Tagged Direction Prediction, Forecasting, Machine Learning, Nearest Neighbor, Neural Networks, Nonlinear Classification, Random Forrests, Support Vector Machines
Comments Off

## Using Volatility to Predict Market Direction

Although asset returns are essentially unforecastable, the same is not true for asset return signs (i.e. the direction-of-change). As long as expected returns are nonzero, one should expect sign dependence, given the overwhelming evidence of volatility dependence. Even in assets where expected returns are zero, sign dependence may be induced by skewness in the asset returns process. Hence market timing ability is a very real possibility, depending on the relationship between the mean of the asset returns process and its higher moments.

Empirical tests demonstrate that sign dependence is very much present in actual US equity returns, with probabilities of positive returns rising to 65% or higher at various points over the last 20 years. A simple logit regression model captures the essentials of the relationship very successfully Continue reading