
2.4 Applying Factor Models in Pairs 
Trading

Pairs Trading With the Fama-French 5 Factor Model 
In this chapter we will explore the use of factor models in pairs trading, beginning with the Fama-
French Factor model. 

We start by gathering the factor data:

In[ ]:= tsFFFactorsDaily =

Fama-French 5-Factor Model FACTOR MODELS ["Data"]["Daily"]["PathComponent", Range[5]]

Out[ ]=

TimeSeries
Time: 01 Jul 1963 to 30 Nov 2022
Data points: 14958

Data not in notebook. Store now



The Fama-French model is fully described in the chapter on Factor Models.  As a reminder, the  five 
factors are as follows:

In[ ]:= tsFFFactorsDaily["MetaInformation"]

Out[ ]=

{ComponentNames  {Mkt-RF, SMB, HML, RMW, CMA}}

In[ ]:= Fama-French 5-Factor Model FACTOR MODELS ["Names"] // Dataset

Out[ ]=

Mkt-RF Excess Return on the Market

SMB Small Minus Big

HML High Minus Low

RMW Robust Minus Weak

CMA Conservative Minus Aggressive

The Rationale for a Factor Model

The main objective in pairs trading, and in statistical  arbitrage in general, is to construct a portfolio 
that is market-neutral and has returns that follow a stable process. In the previous chapter,  we used 



the log-returns series of the PEP and KO stocks to create a combined portfolio, applying a Kalman filter 
to estimate the dynamic relationship between the two returns series. By taking weighted long and 
short positions in the two stocks, as determined by the βt coefficient estimated in the Kalman model, 
we were able to eliminate market risk and achieve a returns process that is close to being stationary.

However, there is still the question of other risk factors such as size or value. While choosing a pair of 
closely-related stocks from the same industry may mitigate most of the factor exposure in the com-
bined portfolio, it is also important to note that the two stocks will have different factor loadings and 
therefore some residual factor risk will remain in the combined portfolio.

The aim, here, therefore, is to eliminate as much factor exposure as possible by first fitting a factor 
model to each returns process and then using the residuals from those factor models to construct the 
trading signals.

Fitting the Fama - French 5 Factor Model

The FactorModel function applies the specified factor model to a specified time series of returns and 
produces and association containing the fitted model and the model residuals, as follows:

In[ ]:= FFmodels = #  FactorModel[tsReturnsSeries[#], tsFFFactorsDaily] & /@ symbols //

Association

Out[ ]=

PEP  Time Series  TimeSeries
Time: 05 Jul 2017 to 30 Nov 2022
Data points: 1363

,

Model  FittedModel 0.627293 F1 -0.299316 F2 -19 F3 +0.370647 F4 +0.476138 F5 ,

Residuals  TimeSeries
Time: 05 Jul 2017 to 30 Nov 2022
Data points: 1363

,

KO  Time Series  TimeSeries
Time: 05 Jul 2017 to 30 Nov 2022
Data points: 1363

,

Model  FittedModel 0.573189 F1 -0.247431 F2 +20 F3 +0.290038 F4 +0.352566 F5 ,

Residuals  TimeSeries
Time: 05 Jul 2017 to 30 Nov 2022
Data points: 1363



We can obtain the  r-squared and scatterplots for each of the fitted factor models, which indicate that 
the Fama-French factors explain more than 40% of the variation in returns, in either stock.

In[ ]:= #  FFmodels[#, "Model"]["RSquared"] & /@ symbols

Out[ ]=

{PEP  0.453364, KO  0.420193}

2     Applying Factor Models in Pairs Trading.nb



In[ ]:= ListPlot[Transpose@{FFmodels[#, "Model"]["PredictedResponse"],

FFmodels[#, "Time Series"]["Values"]}, ImageSize  Medium,

PlotLabel  Style[StringJoin[#, ": Predicted vs Actual Returns"], Bold]] & /@ symbols

Out[ ]=



-0.02 -0.01 0.01 0.02

-0.03

-0.02

-0.01

0.01

0.02

0.03

PEP: Predicted vs Actual Returns

,

-0.01 0.01 0.02

-0.02

-0.01

0.01

0.02

0.03
KO: Predicted vs Actual Returns



Comparing the two factors models, we can see that PEP has considerably greater exposure than KO to 
the market factor F1, the RMW factor F4, and also to the CMA factor F5.  Also  worth noting is that the 
loadings on the size factor F3 are of opposite sign.  These findings suggest that it will be difficult to 
neutralize every dimension of factor risk in the combined long-short pair portfolio simply by using a 
Kalman model, as we did in the previous chapter:  the best we can hope to achieve with that straightfor-
ward approach is to eliminate most of the market exposure.

In[ ]:= #  Normal[FFmodels[#, "Model"]] & /@ symbols

Out[ ]=

{PEP  0.627293 F1 - 0.299316 F2 - 0.127179 F3 + 0.370647 F4 + 0.476138 F5,

KO  0.573189 F1 - 0.247431 F2 + 0.0624475 F3 + 0.290038 F4 + 0.352566 F5}

So, by first removing factor exposure from the two returns processes, the intention here is to mitigate 
as much as possible of the exposure of the combined pairs portfolio, not just to market risk, but to all 
five of the risk factors in the Fama-French model.

Applying Factor Models in Pairs Trading.nb     3



Generating Trading Signals

We pick up the residuals from the factor models and check them for stationarity:

In[ ]:= tsResidualsSeries = #  FFmodels[#, "Residuals"] & /@ symbols // Association

Out[ ]=

PEP  TimeSeries
Time: 05 Jul 2017 to 30 Nov 2022
Data points: 1363

,

KO  TimeSeries
Time: 05 Jul 2017 to 30 Nov 2022
Data points: 1363



In[ ]:= DateListPlot[TimeSeries[Accumulate[tsResidualsSeries[#]["Values"]],

tsResidualsSeries[#]["DateList"]] & /@ symbols, , PlotLabels  symbols]

Out[ ]=

PEP

KO

2018 2020 2022

-0.1

0.0

0.1

0.2

For both stocks, all variants of the unit root tests strongly reject the null hypothesis of a unit root in the 
residuals process:

In[ ]:= #  UnitRootTest[tsResidualsSeries[#]["Values"], Automatic, All] & /@ symbols

Out[ ]=

PEP  1.92219 × 10-18, 5.03542 × 10-21, 4.22255 × 10-18, 4.21158 × 10-21,

KO  3.94559 × 10-18, 2.11893 × 10-20, 7.12979 × 10-18, 2.12818 × 10-20

We next proceed to fit a Kalman Filter model,  this time using the factor model residuals, rather than 
the raw returns.  Note that in this case there is less time-variation in the βt coefficient than in the 
previous Kalman model estimated on raw returns.  This likely reflects the fact that we have successfully 
eliminated residual factor risk in the returns processes.

In[ ]:= {tsBeta, tsZscores, tsQ} = ReturnsTimeSeriesKalman[tsResidualsSeries]

Out[ ]=

TimeSeries
Time: 06 Jul 2017 to 30 Nov 2022
Data points: 1362

,

TimeSeries
Time: 06 Jul 2017 to 30 Nov 2022
Data points: 1362

, TimeSeries
Time: 06 Jul 2017 to 30 Nov 2022
Data points: 1362



4     Applying Factor Models in Pairs Trading.nb



In[ ]:= ListLinePlot[{tsZscores, tsBeta["PathComponent", "Beta"]},

MultiaxisArrangement  All, PlotLabels  {"\nZ-Score", "Beta"}]

Out[ ]=

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Z
-
S
co
re

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
et
a

2018 2020 2022

Distribution of the Kalman Model Zscores

Looking at the distribution of the Zscores, we once again are led to reject the assumption of Normality, 
as before.  In fact, we determine that the Zscore distribution is quite well described by a Student-t 
distribution:

In[ ]:= Histogram[tsZscores]

Out[ ]=

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

50

100

150

Applying Factor Models in Pairs Trading.nb     5



In[ ]:= ℋ = DistributionFitTest[tsZscores, Automatic, "HypothesisTestData"];

ℋ["TestDataTable", All]

Out[ ]=

Statistic P-Value
Anderson-Darling 25.2045 0.

Baringhaus-Henze 28.5568 1.98841 ×10-13

Cramér-von Mises 3.87689 0.
Jarque-Bera ALM 12562.2 0.
Kolmogorov-Smirnov 0.0829255 0.
Kuiper 0.16144 0.
Mardia Combined 12562.2 0.
Mardia Kurtosis 111.433 0.
Mardia Skewness 0.0398311 0.841811

Pearson χ2 204.097 1.4891 ×10-26

Shapiro-Wilk 0.875728 1.2778 ×10-31

Watson U2 3.87441 0.

In[ ]:= d = FindDistribution[tsZscores["Values"]]

Out[ ]=

StudentTDistribution[0.00748215, 0.1273, 2.55469]

In[ ]:= ℋ = DistributionFitTest[tsZscores, d, "HypothesisTestData"];

ℋ["TestDataTable", All]

Out[ ]=

Statistic P-Value
Anderson-Darling 2.09413 0.081584
Cramér-von Mises 0.35563 0.0949307
Kolmogorov-Smirnov 0.0432583 0.0118627
Kuiper 0.0483575 0.0323241

Pearson χ2 46.3877 0.0943853

Watson U2 0.200091 0.0384934

In[ ]:= Show[{Histogram[tsZscores, 40, "PDF"], Plot[PDF[d, x], {x, -1, 1}]}]

Out[ ]=

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Signal Generation

One common method for generating trading signals from Zscores is to use an ARMA time series model 
or a continuous model such as an Ornstein-Uhlenbeck model. However, a significant challenge is that 
the Zscores do not conform to a Gaussian distribution. This means that the parameters estimated from 

6     Applying Factor Models in Pairs Trading.nb



a Gaussian likelihood will be imprecise and any forecasts produced by these models will be unreliable. 
While there are ways to estimate ARMA models with a non-Gaussian residual process, this would 
require a deep dive into econometric modeling, which is beyond the scope of this discussion. Instead, I 
will take a more practical approach, using the empirical distribution of the cumulative Zscores.

In[ ]:= tsCumulativeZscores = TimeSeries[Accumulate[tsZscores["Values"]], tsZscores["DateList"]]

Out[ ]=

TimeSeries
Time: 06 Jul 2017 to 30 Nov 2022
Data points: 1362



In[ ]:= Histogram[tsCumulativeZscores["Values"]]

Out[ ]=

-1.0 -0.5 0.0 0.5 1.0
0

50

100

150

200

It appears that a suitable value for the levelSpacing parameter,  the level at which entry signals are 
generated, would be around +/- 0.7, which in the 1.5%-tile tails of the empirical distribution:

In[ ]:= DateListPlot[tsCumulativeZscores,

Epilog  {Red, Line[{{tsCumulativeZscores["FirstDate"], 0.7},

{tsCumulativeZscores["LastDate"], 0.7}}], Line[{{tsCumulativeZscores["FirstDate"],

-0.7}, {tsCumulativeZscores["LastDate"], -0.7}}]}]

Out[ ]=

2018 2020 2022

-1.0

-0.5

0.0

0.5

1.0

Applying Factor Models in Pairs Trading.nb     7



In[ ]:=  = EmpiricalDistribution[tsCumulativeZscores]

Out[ ]=

DataDistribution
Type: Empirical
Data points: 1362



In[ ]:= CDF[, {-0.7, 0.7}]

Out[ ]=

{0.0154185, 0.986784}

In[ ]:= levelSpacing = 0.7;

In[ ]:= tsSignals = ZscoreSignals[tsZscores, levelSpacing, maxTrades]

Out[ ]=

EventSeries
Time: 06 Jul 2017 to 30 Nov 2022
Data points: 1362



In[ ]:= DateListPlot[tsSignals, Joined  False, Filling  Axis]

Out[ ]=

2018 2020 2022

-1.0

-0.5

0.0

0.5

1.0

BackTesting  the  Kalman Factor Model

Now that we have generated a time series of entry signals, we can proceed to evaluate a pairs trading 
strategy based on those signals using the backtest system built into the Equities Entity Store.

As previously explained, the backtest system neither knows nor cares how the signal time series was 
generated:  the fact that in this case it results from a factor modelling process makes no difference.  We 
simply plug the signals into the backtest system and run it exactly as we did before.  As this simply 
repeats the procedure that I described in depth in the earlier chapter,  I am going to omit all the interme-
diate steps and associated explanations previously given, and instead combine the entire sequence, 
which takes less than 2.5 seconds to run:

8     Applying Factor Models in Pairs Trading.nb



In[ ]:= AbsoluteTiming[

Multiplier = Apply[Divide, TimeSeriesWindow[tsPriceSeries[#]["PathComponent", 4],

{tsBeta["FirstDate"], tsBeta["LastDate"]}]["Values"] & /@ symbols];

tsPortfolioUnits =

TimeSeries[portfolioUnits * Transpose[{ConstantArray[1, tsBeta["PathLength"]],

-Multiplier * tsBeta["PathComponent", 2]["Values"]}], tsBeta["DateList"]];

orderSpec = Association[{"Time Step"  timeStep,

"Symbols"  symbols, "Order Type"  "MOO", "Prices"  tsPriceSeries,

"Signals"  TimeSeriesWindow[tsSignals, {startDate, tsSignals["LastDate"]}],

"Portfolio Units"  tsPortfolioUnits, "Max Trades"  maxTrades}];

tsOrderList = GenerateOrderSpecifications[orderSpec];

executionSpec = Association["Initial Investment"  tsInitialInvestment,

"Orders"  tsOrderList, "Symbols"  symbols, "Point Value"  spreadPointValues];

orderExecutions = GenerateExecutions[executionSpec];

tradeSpec = Association["Executions"  orderExecutions["Executions"],

"PositionQty"  orderExecutions["PositionQuantity"],

"AveragePrice"  orderExecutions["AveragePrice"], "Symbols"  symbols,

"Point Value"  spreadPointValues, "Slippage"  slippage, "Commission"  commission];

tradePerformance = TradePerformance[tradeSpec];

tsOpenPrices =

Association[ Association[#  TimeSeriesWindow[tsPriceSeries[#]["PathComponent", 1],

{startDate, Today}]] & /@ symbols];

positionSpec = Association["Initial Investment"  tsInitialInvestment, "Cash" 

orderExecutions["Cash"], "PositionQty"  orderExecutions["PositionQuantity"] ,

"ValuationPrices"  tsOpenPrices, "Slippage"  slippage, "Commission"  commission];

portfolioUpdate = UpdatePortfolio[positionSpec];]

Out[ ]=

{2.39345, Null}

The strategy based on factor modelling represents a clear improvement over the prior model in almost 
every performance category.

◼ The net profit has increased from $39,356 to $64,261

◼ The total return has increased from 38% to 64%

◼ CAGR has improved from 6.86% to 10.23%

◼ Share ratio has improved from 0.39 to 0.6

◼ Sortino ratio has improved from 0.59 to 0.86

◼ Drawdown has reduced from -30% to -20%

◼ Profit Factor has increased from 1.7 to 7

◼ Win/Loss ratio has risen from 1 to 7

Applying Factor Models in Pairs Trading.nb     9



Performance Summary

In[ ]:= PortfolioSummaryReport[portfolioUpdate]

Out[ ]=

Start Date Fri 29 Dec 2017

End Date Fri 30 Dec 2022

Investment Period 5. yr

Total Realized Profit $64 261.20

Total Unrealized Profit $-1 543.00

Total Net Profit $62 718.20

Transaction Costs $478.50

Total Return 62.72%

CAGR 10.23%

Annual Volatility 17.13%

Annual Semi-Deviation 11.85%

Sharpe Ratio 0.6

Sortino Ratio 0.86

Calmar Ratio 0.5

Max Drawdown Date Wed 19 Feb 2020

Max Drawdown $-19 942.85

Max Drawdown Pct -20.39%

10     Applying Factor Models in Pairs Trading.nb



In[ ]:= Dataset@tradePerformance ["Trade Stats"]

Out[ ]=

Realized Gross Profit 74 886.5

Realized Gross Loss -10 625.3

Realized Net Profit $64 261.20

Profit Factor 7.05

No. Trades 12

Avg. Trade $5 355.10

Avg. Trade Duration 154.6 days

No. Winners 6

No. Losers 6

Win Rate 50.%

Av. Winning Trade $12 481.08

Av. Losing Trade $-1 770.88

Win/Loss Ratio 7.05

Slippage $319.00

Commission $159.50

Applying Factor Models in Pairs Trading.nb     11



In[ ]:= DateListPlot[portfolioUpdate["DailyPortfolioEquity"], PlotLabel  Style["PEP-KO", Bold],

Filling  Axis, ImageSize  Large, GridLines  Automatic]

Out[ ]=

2018 2020 2022

100000

120000

140000

160000

PEP-KO

Conclusion

Our research has revealed that over 40% of the fluctuations in the stock returns for the PEP-KO pair can 
be explained by risk factors outlined in the Fama-French 5 factor model. By eliminating these factors 
from the returns process, we are able to construct a more stable pairs portfolio and clearer trading 
signals. This leads to a significant enhancement in strategy performance, with an increase of around 
50% in total profits, accompanied by a 1/3 reduction in strategy drawdown.

12     Applying Factor Models in Pairs Trading.nb


