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The use of copulas in the study of Value-at-Risk in competitive markets is a research method which 

offers rich possibilities.  In this post we compare VaR based on selected copulas with different 
marginals. We illustrate how to compute Value-at-Risk using Monte Carlo simulations in Wolfram 

Mathematica.

����������
A copula is a tool that describes dependence between variables.

Sklar’s theorem proves the existence of a copula CH that “couples” any joint distribution H(x1, . . . , 
xn) with its univariate marginals F1(x1), . . . , Fn(xn) via the relation H(x1, . . . , xn)  = CH 

(F1(x1), . . . , Fn(xn)) and thus demonstrates that copula distributions are ubiquitous in multivariate 

statistics. 

Copula distributions date as far back as the 1940s, though much of the terminology and machinery 
used today were developed in the 1950s and 1960s. Since their inception, copulas have been used 

to model phenomena in areas including reliability theory, meteorology, and queueing theory, while 

specially purposed copulas and kernels have been developed to serve as tools in fields such as 
survival analysis (via survival copulas) and mathematical finance (via panic copulas). Copula distribu-
tions are also of independent theoretical interest in Monte Carlo theory and applied mathematics.

The Mathematica function CopulaDistribution[ker, {dist1, …, distn}] represents a multivariate statisti-
cal distribution whose j thmarginal distribution is precisely distj, and for which the CDF of a distj - 

distributed random variate follows a uniform distribution.   In this context, varying ker allows investiga-
tion of different types and degrees of dependence.  For example, {“FGM”,α} best models weak 
variable dependence, whereas “Product” allows analysis of independent variables.

�������������
Risk managers need to measure the exposure of the portfolios to different risk factors. In standard 

practice they use Value-at-Risk (VaR) and Expected Shortfall (ES). Both these measures are 

multivariate in the sense that they must account for correlation among the factors from which losses 
may arise.  But this practice is obsolete with respect to structured finance products, according to 

Cherubini et al. (2012), because these products are non-linear, so that their value may change even 

though market prices do not move but their volatilities are changed.

Value-at-Risk describes the loss (amount of capital) that can occur over a given period, at a given 

confidence level, due to exposure to market risk. The Value-at-Risk measure is defined as quantile 

of a probability distribution of losses over a given period.

The Value-at-Risk measure is defined as quantile of a probability distribution of losses over a given 

period:



qα (X) = inf {x : P (X ≤ x) ≥ α}

where X is a random variable representing the value of the portfolio of assets or exposures to risk 
factors.

Then, the VaR of an exposure X at confidence level α will be defined as

VaR (X) = q α (-X) = F-X
-1 (α).

where F-X
-1

 denotes the generalized inverse function F-1: (0,1)  → R   as

F-X
-1 (x) = inf {l ∈ : F (l) ≥ x}.

Risk assessment, whether by VaR or other means, entails a series of assumptions, notably about 
the distributions of risk factors and their co-movement, generally assumed to be multivariate Nor-
mal.  But these assumptions are simplifications of the complex way in which markets tend to oper-
ate.  In general, if there are known two marginal continuous distributions we cannot derive their joint 
distribution (Sklar, 1959, 1996), (Embrechts et al., 2001), (Embrechts et al., 2002), but we can 

recover a joint distribution using copula function. One of the advantages of using copulas is that 
they isolate the dependence structure from the structure of the marginal distributions (Sklar, 1959), 
(Embrechts et al., 2001), (Embrechts et al., 2002), (Cherubini et al. 2004), (McNeil, 2005), 
(Alexander, 2008), etc. The marginal distribution may capture different types of symmetries, asymme-
tries, fat tails and structural breaks with strong influence in estimation results for modeling of the 

dependence structure.

�����������������������
Copula functions express joint distributions of random variable X. A copula enables us to separate 

the joint distribution into marginal distributions of each variable. Sklar’s theorem (Sklar, 1959) states 
that any bivariate or multivariate distribution can be expressed as the copula function C(u1, ... un) 
evaluated at each of the marginal distributions. Using probability integral transform, each continuous 
marginal ui = Fi(xi) has a uniform distribution on I ∈[0,1], where Fi(xi) is the cumulative integral of 
fi(xi)  for the random variable Xi, where Xiassume values on the extended real line (-∞,∞) (Kumar, 
P., 2010). The n-dimensional probability distribution function H has a unique copula representation:

H x1, . . . , xn = CH F1 x1), . . . , Fn (xn) = C u1, . . . , un

The join probability density is

h x1, . . . , xn = ∏i=1
n fi xi) × C u1, . . . , un

fi(xi) is each marginal density and coupling is provided by the copula probability density.

h u1, . . . , un =
∂C u1, . . . , un

∂u1 ∂u2 ... ∂un
When the random variables are independent, C(u1, ... , un) is identically equal to one.

The key point is that the joint distribution can segmented into an independent portion, expressed as 
the product of the marginals, and the copula function C(u1, ... , un). This separation enables us to 

model the dependency between the variates directly.

Different copulas produce different joint distributions when applied to the same marginals. Consider 
two random variables and assume that we have calibrated their marginal distributions. Now sup-
pose we apply two different copulas and so we obtain two different joint distributions. So if only one 

joint distribution exhibits strong lower tail dependence then this distribution should be regarded as 
more risky than the one with a weaker, symmetric dependence, at least according to a downside 
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risk metric. 

Correlation is typically expressed as the Pearson correlation coefficient. But the Pearson correlation 

coefficient is a measure of linear dependence, and it is defined as covariance divided by the product 
of standard deviations, by assuming the data to be normalized to unit variance (Cherubini et al. 
2012). Linear correlation does not work for different probability distributions. Therefore it is neces-
sary to use non-parametric measures such as Kendall`s τ (12) or Spearman`s correlation coefficient 
(rank correlation) (Spearman’s ρ) (13), see (Alexander, 2008), (Embrechts et al., 2002), etc. 

Both these measures can be expressed in terms of copulas:

τ = 4   C (u1, u2) ⅆC (u1, u2) - 1

ρ = 12   u1 u2 ⅆC (u1, u2) - 3

A great many forms have been applied in finance.  Perhaps the most fundamental, if not the most 
useful, is the bivariate normal copula which takes the form:

C u1, u2; θ) = ΦN (Φ-1 (u1), Φ-1 (u2); θ

where Φ is the cdf of the standard normal distribution and ΦN is the standard bivariate normal 
distribution with correlation parameter θ restricted to the interval [-1, 1].  
While the normal copula is flexible in that it allows for both positive and negative dependency, it has 
very weak tail dependency and is therefore not usually appropriate for modeling financial assets. 
The correlation parameter θ is given as:

θ = sin 
π

2
Kendall' s τ

The Student t copula is another implicit copula with ν degrees of freedom and correlation θ derived 

from a multivariate Student t distribution function

Cν u1, u2; θ) = tν tν1
-1 (u1), tν2

-1
(u2); θ)

where t v and tνi are multivariate and univariate Student t distribution functions with ν, or νi degrees 

of freedom that controls the heaviness of the tails and correlation parameter θ. This copula has 
symmetric tail dependency that is higher than those in normal copula, but the dependency is symmet-
ric. 
Copula parameters can be calibrated using Maximum Likelihood Estimate (MLE) (see (Alexander, 
2008)), when both parameters are estimated together or it is calibrated only degree of freedom 

using MLE and as correlation parameter θ is used Spearman’s correlation parameter:

θ = 2 sin 
π

6
Spearman' s ρ

The Clayton copula is widely used in finance, because it allows us to model stronger left tail depen-
dence and weaker right tail dependence, characteristics that are typical of asset processes.  It takes 
the form

C (u1, u2; θ ) = u1
-θ +u2-θ - 1

-
1
θ

with the dependence parameter θ restricted on the region (0,∞). As θ approaches zero, the 

marginals become independent. It has been used to study correlated risks, it exhibits strong left tail 
dependence and relatively weak right tail dependence.

The relationship between Kendall’s τ and θ is:
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Kendall' s τ =
θ

θ + 2

The Frank copula takes the form

C (u1, u2; θ ) = - θ-1 log 1 +
ⅇ-θu1 - 1 ⅇ-θu2 - 1

ⅇ-θ - 1


where the dependence parameter θ may assume any real value from (-∞,∞). It means that Frank 
copula can be used to model outcomes with strong positive or negative dependence. Frank copula 

is most appropriate for data that exhibits weak tail dependence compared to the normal copula and 

the strongest dependence in middle of the distribution.

Here, the relationship between Kendall’s τ and θ is:

Kendall' s τ = 1 -
1

θ

Finally, the Gumbel-Hougard copula takes the following form:

C (u1, u2; θ ) = exp-(-ln u1)
θ +-ln u2θ



1

θ

where θ ∈ [1,∞]. θ = 1 corresponds to independence, θ → ∞ correspond to the perfect positive 

dependence. The Gumbel copula does not allow negative dependence, but in contrast to Clayton, 
Gumbel exhibits strong right tail dependence and relatively weak left tail dependence. The Gumbel 
copula is appropriate when risk factors are strongly correlated at high values but less correlated at 
low values.

Parameter θ is expressed using Kendall’s τ as:

Kendall' s τ = 1 -
1

θ

��������������������������
To illustrate the application of copulas in a risk management context, we will construct a simple 

portfolio comprising the S&P 500 and NASDAQ  Indices. We begin by computing daily log-returns 
for each series and examining their moments.

����

��������� SP500prices = FinancialData["^GSPC", {{2010, 2, 1}, {2017, 1, 20}}];
NASDAQprices = FinancialData["^IXIC", {{2010, 2, 1}, {2017, 1, 20}}];
SP500returns =

Log[Drop[SP500prices[[All, 2]], 1]] - Log[Drop[SP500prices[[All, 2]], -1]];
NASDAQreturns = Log[Drop[NASDAQprices[[All, 2]], 1]] -

Log[Drop[NASDAQprices[[All, 2]], -1]];
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��������� TableForm[Through[{Mean, StandardDeviation, Skewness, Kurtosis}[
Transpose[{SP500returns, NASDAQreturns}]]],

TableHeadings → {{"Mean", "St. Dev.", "Skewness", "Kurtosis"},
{"SP500", "NASDAQ"}}, TableAlignments → Right]

��������������������

SP500 NASDAQ
Mean 0.000418759 0.000535315

St. Dev. 0.00976428 0.0109706
Skewness -0.44119 -0.422737
Kurtosis 7.30581 6.3333

��������� p1 = Histogram[SP500returns, PlotLabel → "log returns SP500"];
p2 = Histogram[NASDAQreturns, PlotLabel → "log returns NASDAQ"];
GraphicsRow[{p1, p2}, ImageSize → Large]

���������
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We begin by estimating the parameters for both normal and Student T distributions for each series 
by maximum likelihood and proceed to test each distribution for goodness of fit.  In each case, we 

find that all of the fitness tests reject the null hypothesis of normally distributed returns, but that the 

Student T distribution appears to provide an adequate fit for both series.

��������� params11 = FindDistributionParameters[SP500returns, NormalDistribution[μ11, σ11]]

params12 =

FindDistributionParameters[NASDAQreturns, NormalDistribution[μ12, σ12]]

params21 = FindDistributionParameters[
SP500returns, StudentTDistribution[μ21, σ21, ν1]]

params22 = FindDistributionParameters[NASDAQreturns,
StudentTDistribution[μ22, σ22, ν2]]

��������� {μ11 → 0.000418759, σ11 → 0.0097615}

��������� {μ12 → 0.000535315, σ12 → 0.0109675}

��������� {μ21 → 0.00073051, σ21 → 0.00627572, ν1 → 2.98517}

��������� {μ22 → 0.000971617, σ22 → 0.00760454, ν2 → 3.49141}
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��������� ℋ11 = DistributionFitTest[SP500returns,
NormalDistribution[μ11, σ11], "HypothesisTestData"] /. params11;

ℋ12 = DistributionFitTest[SP500returns, NormalDistribution[μ12, σ12],
"HypothesisTestData"] /. params12;

Grid[{{" ", "Hypothesis Tests - ", " "}, {" ", "Normal Distribution", " "},
{"SP500", " ", "NASDAQ"}, {ℋ11["TestDataTable", All],
Spacer[100], ℋ12["TestDataTable", All]}}, Frame → True]

���������
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��������� ℋ21 = DistributionFitTest[SP500returns,
StudentTDistribution[μ21, σ21, ν1], "HypothesisTestData"] /. params21;

ℋ22 = DistributionFitTest[NASDAQreturns, StudentTDistribution[μ22, σ22, ν2],
"HypothesisTestData"] /. params22;

Grid[{{" ", "Hypothesis Tests - ", " "}, {" ", "Student T Distribution", " "},
{"SP500", " ", "NASDAQ"}, {ℋ21["TestDataTable", All],
Spacer[200], ℋ22["TestDataTable", All]}}, Frame → True]

���������

Hypothesis Tests -

Student T Distribution
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Below is a scatter plot of daily percentage log returns on the SP500 and NASDAQ indices. We use 

these data to calibrate normal, Clayton and Gumbel copulas. Based on the above analysis, in each 

case we assume the marginals are Student t distributed.
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��������� ListPlot[Transpose[{SP500returns, NASDAQreturns}]]

���������
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We next calibrate the parameters for each type of copula by maximum likelihood.  There are several 
alternatives we can use, including the Method of Moments, for example, and these are listed in the 

documentation for the EstimatedDistrubution function.

It is worth mentioning at this point that Alexander (2008) describes two possible procedures for 
estimating the copulas.  The first is to use maximum likelihood to estimate all of the copula parame-
ters, as we do here.  That works well in this case because we are dealing with only two random 

variates.  In a situation where we may be estimating a copula for several marginal distributions, MLE 

may fail to converge.  So a second procedure can be adopted in which we first calibrate the copula 

correlation parameter, using the relationship with Spearman’s Rho, and then use MLE to estimate 

the remaining copula parameter.  See Alexander (2008) for details.

��������� GaussianCopula = CopulaDistribution[{"Multinormal", {{1, ρ}, {ρ, 1}}},
{StudentTDistribution[μ21, σ21, ν1] /. params21,
StudentTDistribution[μ22, σ22, ν2] /. params22}] ;

GaussianCopula = EstimatedDistribution[
Transpose[{SP500returns, NASDAQreturns}], GaussianCopula]

��������� CopulaDistribution[{Multinormal, {{1, 0.945884}, {0.945884, 1}}},
{StudentTDistribution[0.00073051, 0.00627572, 2.98517],
StudentTDistribution[0.000971617, 0.00760454, 3.49141]}]

��������� ClaytonCopula = CopulaDistribution[
{"Clayton", θ}, {StudentTDistribution[μ21, σ21, ν1] /. params21,
StudentTDistribution[μ22, σ22, ν2] /. params22}] ;

ClaytonCopula = EstimatedDistribution[
Transpose[{SP500returns, NASDAQreturns}], ClaytonCopula]

��������� CopulaDistribution[{Clayton, 0.207943},
{StudentTDistribution[0.00073051, 0.00627572, 2.98517],
StudentTDistribution[0.000971617, 0.00760454, 3.49141]}]
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��������� GumbelCopula = CopulaDistribution[{"GumbelHougaard", θ},
{StudentTDistribution[μ21, σ21, ν1] /. params21,
StudentTDistribution[μ22, σ22, ν2] /. params22}] ;

GumbelCopula = EstimatedDistribution[
Transpose[{SP500returns, NASDAQreturns}], GumbelCopula]

��������� CopulaDistribution[{GumbelHougaard, 4.59593},
{StudentTDistribution[0.00073051, 0.00627572, 2.98517],
StudentTDistribution[0.000971617, 0.00760454, 3.49141]}]

��������� Plot3D[PDF[GaussianCopula, {x, y}], {x, -0.05, 0.05},
{y, -0.05, 0.05}, PlotRange → All, ImageSize → Large]

���������
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��������� Plot3D[PDF[ClaytonCopula, {x, y}], {x, -0.05, 0.05},
{y, -0.05, 0.05}, PlotRange → All, ImageSize → Large]

���������
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��������� Plot3D[PDF[GumbelCopula, {x, y}], {x, -0.05, 0.05},
{y, -0.05, 0.05}, PlotRange → All, ImageSize → Large]

���������

��������� {ListPlot[Transpose[{SP500returns, NASDAQreturns}],
ImageSize → Medium, PlotLabel -> Style["Empirical", Bold]],

ListPlot[RandomVariate[GaussianCopula, 10^3],
ImageSize → Medium, PlotLabel -> Style["Gaussian", Bold]],

ListPlot[RandomVariate[ClaytonCopula, 10^3],
ImageSize → Medium, PlotLabel -> Style["Calyton", Bold]],

ListPlot[RandomVariate[GumbelCopula, 10^3],
ImageSize → Medium, PlotLabel -> Style["Gumbel", Bold]]}
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-0.02 -0.01 0.01 0.02

-0.03

-0.02

-0.01

0.01

0.02

0.03

Empirical

,

10 ���  Copulas in Risk Managment.nb



-0.02 -0.01 0.01 0.02 0.03

-0.03

-0.02

-0.01

0.01

0.02

0.03

Gaussian

,

-0.02 -0.01 0.01 0.02 0.03

-0.03

-0.02

-0.01

0.01

0.02

0.03

Calyton

,

-0.02 -0.01 0.01 0.02 0.03

-0.04

-0.02

0.02

0.04
Gumbel



����������������

The distribution plots for the copulas illustrate the principal differences in their handling of tail depen-
dency.  The Gaussian copula shows symmetric dependency between the S&P500 and Nasdaq 

series, with higher dependency in the center of the distribution compared to the tails. The Clayton 

copula shows stronger left tail dependency, with greater dispersion in the right rail.  The Gumbel 
copula shows the opposite - a higher degree of correlation in the right tail of the distribution, with 

lower dependency in the left tail.
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One way to determine which of the models is most appropriate is to examine the likelihood.  Of 
course, models with greater degrees of freedom (a larger number of parameters) will, other things 
being equal, tend to show a larger likelihood, so the standard procedure is to penalize the likelihood 

for the number of parameters employed in the model - the Akaike Information Criterion and Bayes 
Information Criterion are both examples of this approach.

��������� TableForm[
{LogLikelihood[GaussianCopula, Transpose[{SP500returns, NASDAQreturns}]],
LogLikelihood[ClaytonCopula, Transpose[{SP500returns, NASDAQreturns}]],
LogLikelihood[GumbelCopula, Transpose[{SP500returns, NASDAQreturns}]]},

TableHeadings → {{"Gaussian", "Claytom", "Gumbel"}}]
��������������������

Gaussian 13300.
Claytom 12993.2
Gumbel 13283.3

Based on the Log-Likelihood, the Gaussian copula appears to be the most suitable choice in this 
case.  However, one should not neglect a straightforward comparison between the patterns of 
dependency seen in the empirical data, in comparison to the pattern of dependency depicted by the 

estimated copulas.

In the table below we show the estimated of the Pearson (linear) correlation, the Spearman ρ and 

Kendall τ for the data overall, and for the data comprising the lower and upper tails of the distribu-
tion of SP 500 Index returns.
It is noteworthy that the dependency appears to lessen in both left and right tails, with only slightly 
higher dependency in the right tail compared to the left. This would appear to suggest that a copula 

with lower, approximately symmetric dependency in the tails would be an appropriate choice, sup-
porting the earlier finding in favor of the Gaussian copula (a Frank copula might be another appropri-
ate choice).

��������� LP05 = FlattenPositionSP500returns, _?# < Quantile[SP500returns, 0.05] &;

LP95 = FlattenPositionSP500returns, _?# > Quantile[SP500returns, 0.95] &;

TableForm[
{Through[{Correlation, SpearmanRho, KendallTau}[SP500returns, NASDAQreturns]],
Through[{Correlation, SpearmanRho, KendallTau}[

SP500returns[[LP05]], NASDAQreturns[[LP05]]]],
Through[{Correlation, SpearmanRho, KendallTau}[

SP500returns[[LP95]], NASDAQreturns[[LP95]]]]},
TableHeadings → {{"Overall", "Lower 5%-tile", "Upper 95%-tile"},

{"Pearson", "Spearman", "Kendall"}}]
��������������������

Pearson Spearman Kendall
Overall 0.956041 0.927015 0.779359
Lower 5%-tile 0.924604 0.852245 0.674953
Upper 95%-tile 0.915731 0.774823 0.606522

We next compare the empirical and theoretical measures of dependency, Kendall’s τ, for each of 
the fitted copulas:
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��������� TableForm

KendallTau[SP500returns, NASDAQreturns], ArcSin[0.9458844026736891`] * 2  π,

0.19663268588974306`  2 + 0.19663268588974306`, 1 - 1  4.500333562276729`,

TableHeadings → {{"Empirical", "Gaussian", "Clayton", "Gumbel"}, None}
��������������������

Empirical 0.779359
Gaussian 0.789605
Clayton 0.0895155
Gumbel 0.777794

The Clayton copula appears mis-specified, which perhaps argues in favor of Alexander’s two-step 

calibration procedure rather than relying a single-step MLE, but the values of Kendall’s τ for the 

other copulas appear close to the empirical value.

�������������

Let’s suppose we want to estimate a 1% VaR for an investment portfolio comprising a 70% capital 
allocation to the S&P 500 Index and 30% allocation to the Nasdaq Index.  Using Monte Carlo simula-
tion we derive the 1% VaR levels for each of the different dependence assumptions, as follows:

��������� TableForm[
{Quantile[Dot[Transpose[{SP500returns, NASDAQreturns}], {0.7, 0.3}], 0.01],
Quantile[Dot[RandomVariate[GaussianCopula, 10^3] , {0.7, 0.3}], 0.01],
Quantile[Dot[RandomVariate[ClaytonCopula, 10^3] , {0.7, 0.3}], 0.01],
Quantile[Dot[RandomVariate[GumbelCopula, 10^3] , {0.7, 0.3}], 0.01]},

TableHeadings → {{"Empirical", "Gaussian", "Clayton", "Gumbel"}, None}]
��������������������

Empirical -0.0291767
Gaussian -0.0260779
Clayton -0.0250525
Gumbel -0.023972

The VaR estimates for the investment portfolio based on the copula models slightly under-estimate 

the 1% VaR estimated from the empirical data.

����������
Depending on the characteristics of the portfolio the standard normal VaR model may misrepresent 
its riskiness.  Typically this takes the form of underestimating the risk arising from extreme moves in 

the underlying assets, due to the dependency in the tails of the distributions, which may differ 
markedly from that assumed in a Gaussian framework.  

Copulas are a flexible and effective tool with which to address these shortcomings, providing the 

risk manager with more reliable assessment of the risks across a wider span of possible outcomes, 
including those not yet manifest in the empirical data.
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��������� DensityPlot[PDF[GaussianCopula, {x, y}], {x, -0.01`, 0.01`}, {y, -0.01`, 0.01`},
PlotRange → All, ImageSize → Medium, ColorFunction → ColorData["SolarColors"]]
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