Equity Analysis in the Wolfram Language

Part 1: Equities Entity Store

EntityStores

Somewhat incongruously for a functional programming language, WL incorporates a powerful object-oriented concept known as the *Entity Store*

- Details: https://reference.wolfram.com/language/ref/EntityStore.html
- An Entity Store appears at first to be only a partial implementation of the OO idea:
 - Entities have properties
 - No methods
- However, Entity Store "properties" can be functions, i.e. "methods"

EquitiesEntityStore

- Includes over 1,000 equity entities
- Stocks and stock indices
- Fundamental, technical and historical data
- Ideal for cross-sectional analysis
- Applications:

- Portfolio construction
- Statistical Arbitrage

Installation

Get[StringJoin[dirEntityStore, "EquitiesEntityStore.mx"]];

Typically you would register the store on all kernels, to enable parallelization:

```
{{{"Equities"}, 1}, {{"Equities"}, 2}, {{"Equities"}, 3}, {{"Equities"}, 4}}
```

EquityStoreProperties

```
In[•]:= EntityList["Equities"] // Length
```

Out[•]=

EquityIndices

1005

```
In[*]:= EntityList[EntityClass["Equities", "Stock Indices"]]
Out[*]=
```

SP500

Stocks

Select a sample of individual equity entities:

selectedStocks = { APA EQUITIES, CTSH EQUITIES, CZR EQUITIES, DD EQUITIES, FIVN EQUITIES, HUBS EQUITIES, MPC EQUITIES, PRU EQUITIES, UMPQ EQUITIES, WMT EQUITIES };

SelectIndexComponents

Often we want to define a universe of stocks for analysis that correspond to common index memberships, for example:

```
In[*]:= SelectIndexComponents[selectedStocks, "DOW30"]
```

Out[=]=

```
{WMT}
```


Out[=]=

Selectby Start Date

When performing time series cross-sectional analysis we typically want to select subsets of stocks that were extant on or before specified dates:

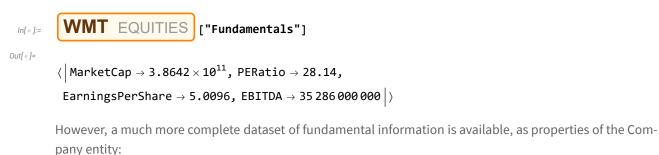
In[•]:= Out[•]=	EntityStartDate[#] & /@ selectedStocks
	{ Tue 2 Jan 1990 , Fri 19 Jun 1998 ,
	Mon 22 Sep 2014 , Fri 1 Sep 2017 , Fri 4 Apr 2014 ,
	Thu 9 Oct 2014, Thu 23 Jun 2011, Thu 13 Dec 2001,
	Wed 18 Dec 1996, Tue 2 Jan 1990
	This is easy to accomplish in the WL operating on the Entity Store:

in[*]:= SelectEntitiesStartDateBefore[selectedStocks, {2001, 1, 1}]

EquityProperties

Each entity in the Equities Entity Store contains the following properties:

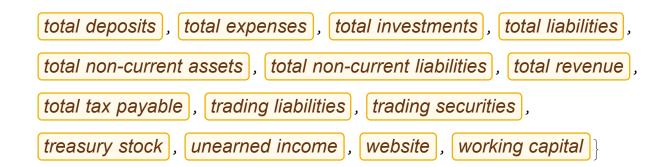
In[。]:=	WMT EQUITIES ["Properties"]
Out[=]=	
	{Company Information, Fundamentals, Historical Data,
	Index Memberships, Performance, Price-Volume


CompanyInformation

We can use the company information to group equities by sector:

In[=]:=	WMT EQU	ITIES ["Company Information"]
Out[=]=	$\langle \Big Symbol o NYS$	E:WMT, Exchange $ ightarrow$ NYSE,
	Start Date \rightarrow	Tue 2 Jan 1990 00:00:00 GMT-5,
	Company \rightarrow	/almart , Sector \rightarrow DiscountStores, SICCode \rightarrow 5331 \rangle

FundamentalInformation


The fundamental information property gives a limited snapshot of current fundamental data for the stock:

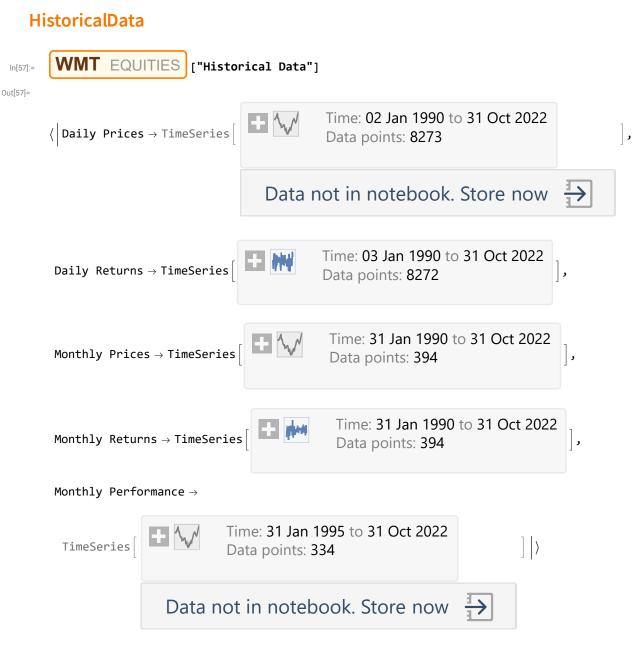
WMT EQUITIES ["Company Information"] ["Company"] ["Properties"] // Short
Out[*]//Short=
{
accounts payable, accounts receivable,
accumulated depreciation, additional paid in capital,

Index Memberships

In[*]:= WMT EQUITIES ["Index Memberships"]

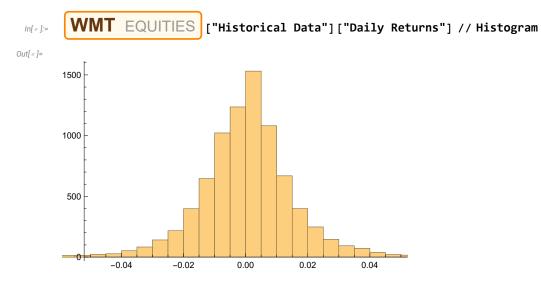
Out[•]=

 $\langle \left| \text{DOW30} \rightarrow \text{True, SP500} \rightarrow \text{True, Russell 1000} \rightarrow \text{True} \right| \rangle$

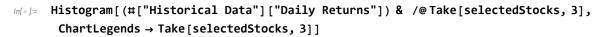

Price-VolumeInformation

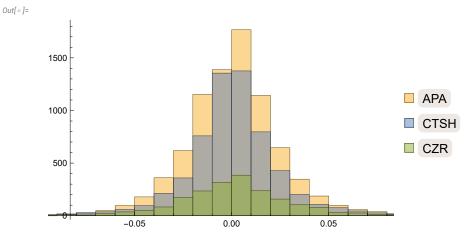
In[•]:=

WMT EQUITIES ["Price-Volume"] // Dataset


Out[•]=

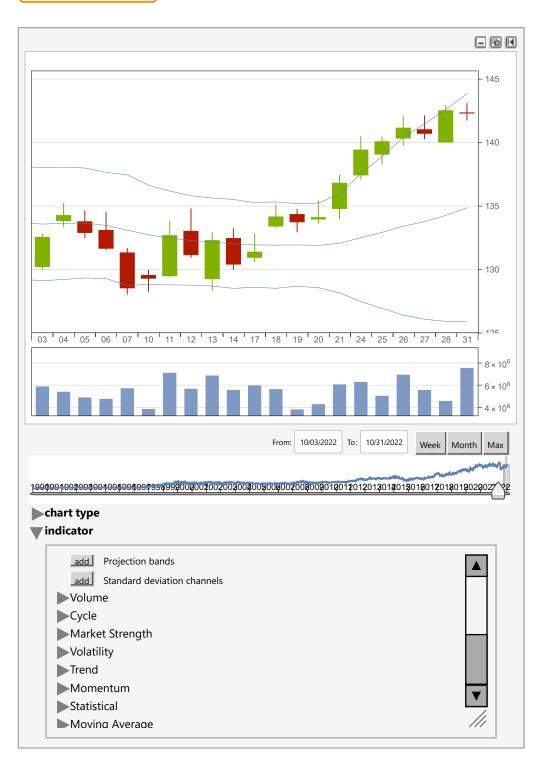
Volume	4889768
AverageVolume3Month	7171903.
AdjustedClose	140.97
High52Week	160.77
Low52Week	117.27
Average200Day	136.235
Average50Day	134.658
FractionalChange200Day	3.4758
FractionalChange50Day	4.68712
Volatility250Day	26.6432
Volatility50Day	19.7909
Volatility20Day	17.6923




Historical data associated with each entity includes daily/monthly price and returns series from Jan 2, 1990 (or the start date of the series, if later).

We can access historical data immediately for analysis, without requiring any data downloading or database retrieval:

Of course, it is also easy to perform a combined analysis for equity entities in the WL, for instance:



We can construct trading charts using the historical price series:

In[...]= WMT EQUITIES ["Historical Data"] ["Daily Prices"] // InteractiveTradingChart

Out[•]=

PerformanceData

Out[•]=

The information we have considered so far can be retrieved using the FinancialData function, albeit that it is presented in a much more convenient and rapidly accessible form in the Equities Entity Store.

However, the Performance property of equity entities contains a substantial amount of pre-computed information that is not directly available from Wolfram:

$In[*]:= Dataset [WMT EQUITIES ["Performance"], HeaderStyle \rightarrow {Normal, Bold}, DatasetTheme \rightarrow {Normal, Bold}, DatasetTheme}$

	Date	Period(I	relPrice	SP500 Correla	AutoCorrelati	Total Ref
Inception	Wed 3 Jan 1990	394	3.57	0.52	0.259	3746.38
60–Months	Wed 1 Nov 2017	60	1.19	0.47	0.053	78.9
12–Months	Mon 1 Nov 2021	12	1.15	0.36	-0.045	-3.23
9–Months	Tue 1 Feb 2022	9	1.2	0.38	0.139	3.01
6–Months	Mon 2 May 2022	6	1.0	0.41	0.02	-6.22
3–Months	Mon 1 Aug 2022	3	1.15	0.59	0.031	8.25
1–Month	Mon 3 Oct 2022	1	1.02	0.69	-0.103	9.74

{"AlternatingRowColumnBackgrounds", LightBlue, LightOrange}, MaxItems \rightarrow {8, 14}

Most of the data items are self explanatory, but some require others elucidation:

• The relPrice is the price of the stock relative to the SP500 index, starting from an initial value of 1.0, for periods commencing 1-month, 3-months,..., 60-months ago and from inception. In this example we can see

that **WMT** has matched or outperformed the index in every period, including from inception of the series.

- Autocorrelation refers to the autocorrelation in 1-month, 3-month,... etc, returns. The autocorrelation from inception is the autocorrelation in daily returns, from the start of the data series.
- The IR is the information ratio, defined here as the ratio of the CAGR to the annualized volatility, estimated for the last 1-month, 3-month,... etc period.
- The Alpha and Beta are the CAPM regression estimates obtained by regressing the (excess) daily returns in the stock against those of the index, for the corresponding 1-month, 3-month,.. etc period.
- μ and σ are the annualized, instantaneous drift and volatility parameters for a Geometric Brownian Motion process estimated using daily closing prices over the last 1-month, 3-month, .. etc period.
- The IIR, the instantaneous information ratio is the ratio $\frac{\mu}{\sigma}$

Cross-SectionaAnalysis

FundamentalInformationDataset

In[*]:= Dataset[<|# → #["Fundamentals"] & /@ selectedStocks|>, HeaderStyle → {Normal, Bold}, DatasetTheme → {"AlternatingRowColumnBackgrounds", LightBlue, LightOrange}]

Out[=]=

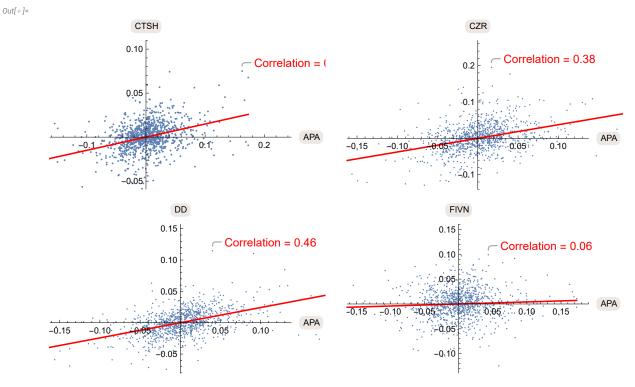
	MarketCap	PERatio	EarningsPerShare	EBITDA
APA	16332955473.	5.5118	8.8882	5696000000
СТЅН	27 262 340 553.	12.2253	4.305	3 540 000 000
CZR	9115416185.	—	-6.8981	2 545 000 000
DD	31020516063.	16.9862	3.6459	2945000000
FIVN	3 4 8 3 4 7 4 5 4 4.	—	-1.1898	-74023000
HUBS	12758221365.		-2.0124	-36084000
MPC	60354450783.	7.94203	14.8136	16396000000
PRU	39147548743.		—	3975000000
UMPQ	4393071103.	—		
WMT	386419925895.	28.14	5.0096	35 286 000 000

Cross-SectionaPerformanceDataset

We might want to carry out a comparative analysis, looking at performance over, say, the last nine months:

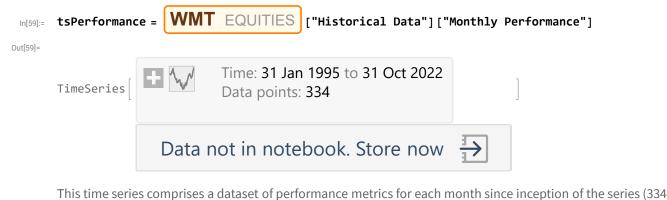
$\label{eq:linear} \textit{In[*]:=} \quad \mathsf{Dataset[<|# \to \#["Performance"]["9-Months"] \& /@selectedStocks|>,}$ HeaderStyle \rightarrow {Normal, Bold}, DatasetTheme \rightarrow

{"AlternatingRowColumnBackgrounds", LightBlue, LightOrange}, MaxItems \rightarrow {10, 14}]


Out[]=
------	----

	Date	Period(I	relPrice	SP500 Correla	AutoCorrelati	Total Retur
APA	Tue 1 Feb 2022	9	1.62	0.45	-0.044	38.64
СТЅН	Tue 1 Feb 2022	9	0.86	0.78	-0.104	-26.33
CZR	Tue 1 Feb 2022	9	0.67	0.73	-0.126	-42.57
DD	Tue 1 Feb 2022	9	0.88	0.83	-0.004	-24.24
FIVN	Tue 1 Feb 2022	9	0.56	0.55	-0.042	-52.06
HUBS	Tue 1 Feb 2022	9	0.71	0.69	-0.041	-39.33
MPC	Tue 1 Feb 2022	9	1.88	0.48	-0.02	61.44
PRU	Tue 1 Feb 2022	9	1.14	0.78	-0.005	-2.45
UMPQ	Tue 1 Feb 2022	9	1.2	0.65	0.073	2.66
WMT	Tue 1 Feb 2022	9	1.2	0.38	0.139	3.01

CorrelationPlots(withoutlierdetection)


In this example we are looking at correlation plots for pairs of equities, using WL's Anomaly Detection functionality to remove outliers from the data:

In[*]:= plots = CorrelationPlot[selectedStocks[1], #, True, 1000] & /@ selectedStocks[2;; 5]; GraphicsGrid[{plots[1;; 2], plots[3;; 4]}]

HistoricalPerformanceData

While the snapshot performance information contained in the Performance property of each equity entity is interesting, much more useful is the historical performance data contained in the Historical Data property:

months). For example, the performance data for WMT on Oct 20, 2015 (month 250 of the series) was as

follows:

```
ln[77]:= date = DateObject[tsPerformance["Dates"][[250]], "Day"]
Dataset[tsPerformance[First@tsPerformance["Dates"]], DatasetTheme →
{"AlternatingRowColumnBackgrounds", LightBlue, LightOrange}, MaxItems → {8, 14}]
```

Out[77]=

Fri 30 Oct 2015

Out[78]=

	Date	Period(month:	relPrice	SP500 Correlat	AutoCorrelatio	Tot
60–Months	Thu 1 Feb 1990	60.0	1.54	0.63	0. + Missing	119
12–Months	Tue 1 Feb 1994	12.0	0.89	0.48	-0.138	-13
9–Months	Mon 2 May 1994	9.0	0.87	0.44	-0.073	-8.
6–Months	Mon 1 Aug 1994	6.0	0.89	0.42	-0.072	-8.
3–Months	Tue 1 Nov 1994	3.0	0.98	0.25	0.158	-2.
1–Month	Tue 3 Jan 1995	1.0	1.05	0.23	-0.045	7.6

Why is this useful?

In cross-sectional strategy design we typically look at performance metics for a universe of stocks at the end of each month, using these to decide which stocks to go long and which to short for the next month.

The Historical Performance Data contained in the Equities Entity Store provides exactly the information we

would need to construct such long/short equity portfolios.

We will discuss this application in Part 2 of the presentation.