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Overview

> TIme series data & forecasts
> ARIMA models
» Model diagnosis & testing
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Time Series Data & Forecasting

Historical Data
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Univariate Time Series Models

» Autoregressive AR(1):
Yi=ady T Y T &

» Moving Average MA(1):
yt - 8t + Blgt-l

> g = sequence of independent random variables
Independent

Zero mean
Constant variance o?
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White Noise

» Mean Is constant (zero)

E(e) = (0)
» Variance Is constant

Var(e,) = E(g?) = 62
» Uncorrelated

Cov(e,, &) =0 forj<>0andt
» Gaussian White Noise

If ¢, Is also normally distributed
> Strict White Noise

g are independent
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LLag Operator

> L"Y = Vim
» S0 AR(1) process can be represented as:
(1-BL) Y= ¢

> Invertibility

An AR(1) process can be represented as MA():
= If|B| <1

yt: (1 - BI—)_l Ey
Ye=[1+BL+(BL)+...]¢&
Vi=&t+Be +P et ..
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Stationarity

» Weak (covariance) stationarity
Population moments are time-independent:

"E(Y)=u
" Var(yy) =o*

" Cov(Yo Yij) =]
Example: white noise ¢,

» Strong stationarity
In addition, Y, is normally distributed
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Stationary Series

Stationary Series ~ N(0,1)
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Stationarity of AR(1) Process

> AR(1) Process: y,=a, + a,y,, + &
» Expected value E(y,) Is time-dependent:

t=1
E(yt) — aozail "'aityo
i=0

» If |a,| < 1, then as t —oo, process is stationary
LimE(y)=a,/(1-a)
= Hence mean of v, is finite and time independent
Also Var(y,) = E[e + ae, + a2+ . . . )]
" =cfl+(a)?+ @)t+...] =c[l-(a)?
= And Cov(Y, Y,) = 6% (a,)° /[1 - (a))?]
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Stationarity Considerations

» Sample drawn from recent process may not be
stationary

» Hence many econometricians assume process
has been continuing for infinite time

» Can be problematic
E.G. FX rate changes post Bretton-woods
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Random Walk Process

> Random Walk with drift
Yi=ay T adY,, T &
= Witha, =1
= A non-stationary process

Random Walk with Drift

.
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2
1
0
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Random Walk Process

> Random Walk without drift
Yi=dy T Y, T &
=" Witha,=1,a,=0
" Ay, =gory =(1-L)'g =g tete te,. ..
Also a non-stationary process

= Variance of y, gets larger over time
— Hence not independent of time.

Var(y,) = E{ng + 225@8} =no?’
1

t#S
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Moving Average Process

» MA(1) process
Ve =&+ Pey = (1 +BLl)g,
> Invertibility: |B| <1
(1+BL) Ty, = &,
Vi = Z(-B) 1y + &
So MA(1) process with [B| < 1 is an infinite autoregressive
process

Similary an AR(1) process with |B| < 1 is invertible
"= .e. can be represented as an infinite MA process
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MA(1) Process

MA(1) Process
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ARMA(1, 1) Process

> Vi = Y T &t Pey

ARMA(L, 1) Process y; =ay.1 +t gt + Ber1
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General ARMA Process

» Any stationary time series can be approximated by a
mixed autoregressive moving average model

> ARMA(p, q)
YVi= 0¥t Ot Yt

gt 0, +0,,+...+0¢g,
D(L) y, = 6(L)e,
> @ and O are polynomials in the lag operator L
DL)=1-,L-pL2-. . .-,LP
OL)=1+0,L+0,L2+. . .+0,Ld
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Unit Roots

» Stationarity Condition

Roots of ¢(L) must lie outside the unit circle
= |x;| > 1 for all roots x;

> Invertibility Condition

Roots of 6(L) must lie outside the unit circle
" |zi| > 1 for all roots z,
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Autocorrelation
> Population autocorrelation between y, and vy, .
> P =YY (t=%1,£2,...)
v. IS the autocovariance function at lag t

- COV(yt J yt-r )

" vo=Var(y;)
po = 1, by definition

> Sample autocorrelation: p’.=c_/c,
Where c_ Is the sample autocovariance

Z(yt VN —Y)

_Tt 7+1
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ACF for AR(1) Process

> AR(1) Process: y, = a, + a,y,, + &
» Correlation: p.=(a,)s,s=0,1, ...
Since:
Yo= o4/[1-(a)%
Ys = 0°(ay)°/ [1 - (ay)2]
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ACF for AR(1) Process

> al — 0.75 ACF for AR(1) Process

M Estimated
W Theoretical

8 9 10111213 14 6 I7 18 19 20

Lag

ACF for AR(1) Process

> a, =-0.75

M Estimated
W Theoretical
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ACF for MA(1) Process

» MA(1) Process: y, = g, + Be,,
» Yule-Walker Equations
Yo = Var(yy = E(Y; Yi) = El(& + Be.y) (& + Bewy)]
= (1 + B?)o?
Y1 = E(Y; Vi) = El(e; + Bewy) (81 + Berr)] = Po?
Ys = E(Yi Vi) = El(e + Pewy) (65 + Bes)] =0, s>1
> ACF

Po=1
p,= B/ (1+PB9)
p,=0,fors>1
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ACF for MA(1) Process

ACF for MA(1) Process

ACF for MA(1) Process

' | @ Theoretical
M Estimated
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Partial Autocorrelation Function (PACF)

> In AR(1) process y, and y,, are correlated
Indirectly, through vy, ,

Py = Corr(y, Yio) = Corr(y, Yea) * Corr(yey, Yia) = pi°
> Partial autocorrelation between y, and y, .

Eliminates effects of intervening values y, ; t0 Y, ;1

Effectively doing autoregression of y, against y, ; to y, .

"V, = 2 biyyi + &
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Calculating PACF

» Form seriesy*, =y, - u
M is mean e{y,}

» Form first-order autoregressive equation

> Y5 = 0uy it €
e, IS error process which may not be white noise
¢,, 1S both AC and PAC between y, and y, ,

» Form second-order autoregressive eguation
> Y Z 00Tt 0y T e

®,, Is PAC betweeny, and y,, , I.E autocorrelation between y,
and y,_, controlling (netting out) effect of y, ,

> Repeat for all additional lags to obtain PACF
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PACF by Yule-Walker

> Form PACF from ACF

G113 = P1s P = (P2 - P12) [ (L - ps?)
» Formula for additional lagss =3, 4, . ..

¢Sj — ¢s—1,j _¢ss¢s—1,s—j J =12,.5-1
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PACF for AR and MA Processes

» For AR(p) process
No direct correlation betweeny,and y, . fors > p
Hence ¢, =0 fors>p
Good means of indentifying AR(p) type process

> For MA(1) process y, = g, + Pe.; = (1 + BL)g,
Ve = Z(-B) 1y + & for B < 1
Hence vy, Is correlated with all its own lags

PACF will decay geometrically
= Directif <0
= Alternating iIf § >0
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Lab: ARMAC(1, 1) Process

> ARMA(L, 1):y,=a,Ye + &+ P&y

> Lab:

Generate time series
Compute theoretical ACF
= Yule-Walker equations
Estimate sample ACF
= Autocorrel function
How does pattern of ACF depend on parameters?
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Solution: ARMA(1, 1) Process

» Yule-Walker Equations

Yo = E(YiYd) = a1E(Ye1 YO+ E(er Yy + BiE(er; Vo)
=a;y; + 6%+ B1E[e 4 (arYeq + &+ Biged)]
= a7, + o + By(a+ By) o

Y1 = EYViYed) = aE(Ye Yedt E(& Yed) + BiE(ers Vi)
=8, Yo+ Py o

Ys = BVt Yis) = a1E(Yia Vi)t E(&r Yis) + B1E(Er1 Yis)
= 81 V51

Solution

_A+ap)a+p) o _Araf)@+f)

V1 L1

(1-af)  (+ B +28,8)
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ACF for ARMA(1, 1) Process

ACF for ARMA(1,1) Process

M Estimated

10 11 12 13 14 15 16 17 18 19 20

> al — 0.6’ ACF for ARMA(L,1) Process
Bl — '095

10 11 18 13 14 15 16 17 18 19 20 W Theoretical
M Estimated
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PACF for ARM(1,1) Process

— — PACF for ARMA(1,1) Process

W Theoretical

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Lo EStimated

PACF for ARMA(1,1) Process

> al - O- 7, aa B Theoretical
M Estimated
B].:-OB 10 11 12 13 14 15 16 17 18 19 20
| |

Lag
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Properties of ACF and PACF

Process ACF PACF

White Noise All p,=0 All ¢, =0

AR(1):a>0 Geometric decay: p, = a° d = pg; O = 0;5>1

AR(1):a<0 Oscillating decay: p, = as $; = Py O, = 0;5>1

MA(1): >0 +ve spike at lag 1. Oscillating decay
p,=0fors>1 ¢, >0

MA(1): <0 -ve spike at lag 1. Decay
p,=0fors>1 ¢, >0
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Box-Jenkins Methodology

» Phase | - identification
Identify appropriate models

» Phase Il - estimation & testing
Estimate model parameters
Check residuals

» Phase Il application
Use model to forecast
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Phase | - ldentification

» Data preparation
Transform data to stabilise variance
Difference data to obtain stationary series
» Model selection

Examine data, ACF and PACF to identify
potential models
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Phase Il - Estimation & Testing

» Estimation
Estimate model parameters
Select best model using suitable criterion

» Diagnostics
Check ACF/PACEF of residuals

Do portmanteau test of residuals

Are residuals white noise?
= |f not, return to phase | (model selection)
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Model Selection Criteria

» TWO objectives
Minimize sums of squares of residuals
= Can always reduce by adding more parameters

Parsimony
= Avoid excess paramterization
— |.E. Loss of degrees of freedom
= Better forecasting performance

> Solution

Penalize the likelihood for each additional term
added to model
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Likelithood Function

> Assume y, ~ No(u, 2)
» Likelihood
L = (-n/2)[Ln(2r) +LNn(c?)] - (1/269)2(Y, - n)?
Maximizing wrt u, c2:
MLE Estimates
" =2y /n
" (") = 2(y,-w)*/n
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Likelthood Function in Regression
> Simple Linear Regression: y, = X, + &
.~ 11D No(0, 62
» Likelihood
L = (-n/2)[Ln(2r) +LNn(c?)] - (1/262)2(Y, - BX,)?
» MLE Estimates
(0")2= 2(g)? /1
B = 2(xy, ) [ 2(x )
» Standard Error
6’y =6/ { (X~ Xmean) J2
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Maximum Likelihood Estimation

» Akaike information criterion (AIC)

AIC = -2Ln(Likelihood) + 2m
~ nLn(SSE) + 2m
» Schwartz Bayesian information criterion (BIC)
BIC = -2Ln(Likelihood) + mLn(n)
~ nLn(SSE) + mLn(n)
= | is likelihood function
= SSE is error sums of squares

" nis number of observations
=" m is number of model parameters
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Using MLE Model Criteria

» When comparing models:

N should be kept fixed

= E.G. With 100 data points estimate an AR(1) and
AR(2) using only last 98 points.

Use same time period for all models

AIC and BIC should be as small as possible
= \What matter is comparative value of AIC or BIC
= BIC has better large sample properties
= AIC will tend to prefer over-paramaterized models
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Sums of Squares

» Sums of Squares
Due to Model = SSM

SSM = Z(yt — y)z

Due to Error = SSE

SSE = Z(yt - 9t)2

Total Sums of Squares = SST = SSM + SSE
SST = Z(yt - y)z
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ANOVA and Goodness of Fit

Degrees
Source of

of Sums of Freedo Mean

Variation S m S

Regression 55R M MER=55R/m [F=MSEMSE
Errar SSE N-m-1 MMSE-SSENN-m)

Total SSET -1

> F test statistic = MSR/MSE

With 1 and n-m-1 degrees of freedom
= n Is #observations, m Is # independent variables
= |_arge value indicates relationship Is statistically significant
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Coefficient of Determination

> R? = SSR/SST

How much of total variation is explained by
regression

> Adjusted R2
Adjusted R = 1-(1-R?) (n-1)/(n-m-1)
= |dea: R? can always increase by adding more variables

= Penalize R? for loss of degrees of freedom

= Useful for comparing models with different # independent
variables m
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Diagnostic Checking

> You need to check residuals: e; = (y; - f;)
= Residual = actual - forecast

» Residual plot: residual vs. actual

= Residual plot should be random scatter around zero
= If not, it implies poor fit, confidence intervals invalid

" However, estimates are still the best we can achieve, but we can’t say
how good they are likely to be.

> Test for:
Bias: non-zero mean
Heteroscedasticity (non-constant variance)
Non-normality of residuals
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Residual Plot

Residual
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Residual Plot - Bias

A 4

Residual
s
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Residual Plot - Heteroscedasticity

Residual
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Anderson, Bartlett & Quenollle

» ACF and PACF coefficients ~ No(0, 1/n)

If data Is white noise
Hence 95% of coefficients lie in range +1.96/n

Stationary Series ACF

15 16 17 18 19 20
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Durbin-Watson Test

Check for serial autocorrelation In residuals

Range: 0to 4. DW = 2 for white noise
= Small values indicate +ve autocorrelation
= | arge values indicate -ve autocorrelation
NB not valid when model contains lagged values of y,
= Use DW-h = (1 - DW/2)N{n/[1-nc’,]} ~ no(0,1) for large n
— X', Is the standard error of the one-period lag coefficient a,
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Portmanteau Tests: Box-Pierce

> Simultaneous tests of ACF coefficients to see if
data (residuals) are white noise

> Box-Plerce

= Usually h =~ 20 is selected
Used to test autocorrelations of residuals

If residuals are white noise the Q ~ y2(h-m)
= m is number of model parameters (O for raw data)
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Portmanteau Tests: Ljung-Box

> More accurate for small n

If data is white noise then Q* ~ y?(h-m)

Usual to conclude that data Is not white noise If
Q exceeds 5% of right hand tail of 2 distn.
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Tests for Normality

» Error Distribution Moments
Skewness: should be ~ 0
Kurtosis: should be ~ 3
> Jarque-Bera Test
J-B = n[Skewness / 6 + (Kurtosis — 3)? / 24]
J-B ~%*(2)
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Lab: Box-Jenkins Analysis

» Fit ARMA mggeﬁ B.%a Set 1

Using box Jenkins methodology
= Compute & examine ACF and PACF
= Estimate MLE model parameters
= Check residuals using portmanteau tests
= How good is your model at forecasting?

Time Series and Forecast

5.0
4.0
3.0

A ,m,.,ﬁ a2

; " NN 06 , © "g’ o> & @ WW“%’, - \/ %%

-3.0

—=— Actual

-4.0 - —e— Forecast
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Solution: Box-Jenkins Analysis
Test Data Set 1

» ACT and PACF suggest AR(1) Model

ACFand PACF- Time Series
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Solution: Box-Jenkins Analysis
Test Data Set 1

> MLE Estimate: a=0.766
> Residuals are white noise:
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Forecast Function

> E.g. AR(1) process: V,,; =a,+ ay, + &,
» Forecast Function

E(Yir) = 3, + Y,
- Et(yt+j) — Et(yt+j | Yes Yoo Year -+« 0 €6 € -+ )
E(Yeo) = 89 + 2 E(Yeuy) = a5 + 352, + 3,2y,
Et(yt+j) =ay(l+a,+a’+...+afh) +a2y,—»al/(l-a)

Copyright © 1999-2011 Investment Analytics Forecasting Financial Markets — Time Series Analysis Slide: 56



Forecast Error

> J-step ahead forecast error: n(J) = Y- E(Ye)

N(1) =Y - EYid) = €
N(2) = Yo - BE(Yuo) = €uo + 1€
Q) = Euj ¥ Ai€ujq T A%Euio+ .. A TE,
> Forecasts are unbiased
EdnQ)] = Elew; + aguju+ 8%+ .- +ad1e,]=0
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Confidence Intervals

» Forecast Variance
Var[n()] = o?[1; + a2+ a/+ ... +a,20] - o?/(1- a,%)
®= Forecast variance Is an increasing function of |
= |n limit, forecast variance converges to variance of {y}

» Confidence Intervals
Var[n(1)] = o
" Hence 95% confidence interval fory,,,is a, + a,y,*+ 1.96c
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Non-Stationarity

» Non-stationarity in the mean
Differencing often produces stationarity
= E.g. If Y, Is random walk with drift, AY, Is stationary
Differencing Operator: A°

= Difference Y, d times to yield stationary series A%(Y,)
— For most economic time series d = 1 or 2 is sufficient

» Non-stationarity In the variance
Use power or logarithmic transformation
"E.g. Stock returns r, = Ln(P,,, / P))

Copyright © 1999-2011 Investment Analytics Forecasting Financial Markets — Time Series Analysis Slide: 59



ARIMA Models

» ARIMA(p,d,g) models

Autoregressive Integrated Moving Average

d is the order of the differencing operator required to produce
stationarity (in the mean)

» Many economic time series are modeled ARIMA(0,1,1)
Ay =agt &t Bigy
e.g. GDP, consumption, income
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Seasonal Models

» Box-Jenkins technique for seasonal models

No different than for non-seasonal

Seasonal coefficients of the ACF and PACF
appear at lags s, 2s, 3s, . .

» Examples of Seasonal Models
Additive
"V =Y T aYid) &
"V, = g+ Byle) + &
Multiplicative
= (1-a,L)(1-a,Ll%y, =(1-p,Le

= Captures interactive effects in terms e.g. (2,8, Y, )
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How to Model Seasonal Data

» Explicitly in model
With AR and/or MA terms at lag S

» Seasonal differencing

Difference series at lag S to achieve (seasonal)
stationarity

= E.g. for monthly seasonality form y*, =y, - y,,

= Model resulting stationary series y*, in usual way
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Lab: Modelling the US Wholesale
Price Index

US Wholesale Prices Index (1985 = 100)
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Lab: US Wholesale Price Index

» Data preparation

Clearly non-stationary in mean and variance
Consider ALn(WPI)

> ldentification for transformed series
Examine transformed series, ACF and PACF
Seasonal (quarterly)

» Model estimation & testing
AR(2)
ARMA(1,1)
ARMA(2,1) with seasonal term at lag 4
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Solution: US Wholesale Price Index

» Best model iIs seasonal ARMAJ1, (1,4)]
Y, = 0.0025+ 0.7700y, , + &, —0.4246¢,, + 0.3120¢, ,

Model ag a, a, B, B, AIC BIC Adj.R*

AR(1) 0.0013 0.0738
0.04% 0.00%

AR(2) 0.0035 0.4423 0.2345
0.52% 0.00% 0.46%

ARMA(L,(1,4)) 0.0025 0.7700 -0.4246 0.3120 -
5.96% 0.03% 3.48% 0.07%

ARMA(2,(1,4)) 0.0025 0.7969 -0.0238 -0.4411 0.3132 -
6.25% 0.02% 43.38% 2.98% 0.06%
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Solution: US Wholesale Price Index

Changes in Log(Wholesale Prices Index)
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Regression Models

> Linear models of form:
> Yy =Dyt b Xy + 0K . DXt g

{¢, }is strict white noise process

X; are independent, explanatory variables
= May or may not be causal
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Example: Regression Model for
Excess Equity Returns

» Pesaran & Timmermann (1974)
Y, =B, + BYSP_, + B,Pl12,_, + B,DI11_, + B,DIP12, , +&,

" Y, is excess return on S&P500 over the 1-month T-Bill rate.

" YSP is the dividend yield, defined as:
12-month average dividend / month-end S&P500 Index value
" PI12 is the rate of change of the 12-month moving average of
the producer price index:
PI12 = Ln{PPI12 / PPI12(-12)}

" DI11 1s the change in the 1-month T-Bill rate
" DIP12 is the rate of change of the 12-month moving average

of the index of industrial production

— DIPI12 = Ln{IP12 / IP12(-12)}
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Regression Methods

> Standard Method

Use all data
Problem: data dependent; structural change

» Stepwise
Forward: start with minimal model, add variables
Backward: start with full model and eliminate variables
Estimate contribution of individual variables

» Rolling/ Recursive

Re-estimate regression over overlapping, successive fixed-
length periods

Re-estimate regression after adding each new period’s data
Useful for ex-ante estimation & out of sample forecasting
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Lab: Recursive Regression Prediction
of Excess Equity Returns

> Replicate part of Pesaran & Timmermann study
» Monthly SP500 excess returns 1954 — 1992

» Use recursive regression & ex-ante variables

» Examine forecasting performance

» Develop trading system
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Recursive Parameter Estimates

Recursive Parameter Estimation
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Parameter Estimates & ANOVA

-0.024 14.338 -0.280 -0.007  -0.159
SE 0.010 3.424 0.065 0.003  0.040
t-statistic -2.442 4.188 -4.321 -2.763  -3.941
Prob 1.497% 0.003% 0.002% 0.595%  0.009%

R 8.6%

Correl 20.7%

F 10.82 DF 461.00 Prob  0.000%
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Residuals

X N
Neo

wn
800% -4.00%0-288»B0
o 3

Forecast BExcess Returns
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Trading System Performance

S&P500 Cumulative Trading Returns

— Buy & Hold
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Random Walk Model

» Special case of AR(1) witha,=0anda, =1
Yi = Y T &
Vi =Yt 2g fori=1,...,t
» Mean i1s Constant
E(y) = E(Yo) +E(Zg;) =Y,
» Conditional Mean =,
Ve = Y, T 2¢,, fori=1,...,s
EYus) = Y TE(Zew) =Y,
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Shocks and Random Walks

» Series Is permanently affected by shocks
g, has non-decaying effect on {Y,}
» Variance Is time-dependant

Var(y,) = Var(Zg,) = to?
® Hence non-stationary

> Covariance
E[Y:-Yo)Vis - Yo) = E[(2€;)(€is * €rgq t - - - €1)]
= E[(e)* +. ..+ (€)7]
Vs = (t - 3)62
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Correlation of Random Walk Process

> Correlation: p, = [(t-s)/t]*?

For small s, (t-s)/t=1

As s increases, p, will decay very slightly
> ldentification Problem

Can’t use ACF to distinguish between a unit root
process (a, = 1) and one in which a, is close to 1

= Will mimic an AR(1) process with a near unit root

Copyright © 1999-2011 Investment Analytics Forecasting Financial Markets — Time Series Analysis Slide: 77



Testing for Random Walk

> AR processy, = a,y,, + &

» Hypothesis testa, =0

Can use t-test
= OLS estimate of a, Is efficient
= Because |a,| < 1 and {&} Is white noise

» Hypothesis test a,= 1; can’t use t-test
{V.:} Is non-stationary: y, = Xg;
Variance becomes infinitely large

OLS estimate of a, will be biased below true value
"a,~p, = [(tD]<1
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Random Walk Example

» Appears stationary
ACF decays to zero

Random Walk with Drift: y,=y;1+&;

ACF for Random Walk

15 16 17 18 19 20
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Dickey-Fuller Methodology

> Use Monte-Carlo

Generate 10,000 unit root processes {y, }
Estimate parameter a,

Estimate confidence levels:
= 00% of estimates are less than 2.58 SE from 1
= 05% of estimates are less than 2.89 SE from 1
= 09% of estimates are less than 3.51 SE from 1

Test Example

= Suppose we have series for which estimated value of
parameter a,1s 2.95 SE< 1

= Reject hypothesis of unit root at 5% level
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Dickey-Fuller Tests

» Unit Root Process: y, =a,y,, + &,
» Equivalent form

AY, =YY + &
= y=1-a,

> Test: y =0
Equivalent to testing a, = 1

» Other unit root regression models
Ay, =8, + 1Y t &
Ay, =a, + vy, + a1+ ¢
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Dickey-Fuller Test Procedure

» Test Procedure
Estimate y using OLS

Compute t-statistic
= Divide OLS estimate by SE
Compare t-statistic with appropriate critical
value in Dickey-Fuller tables
Critical value depends on
= sample size

= form of model
= confidence level
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Critical Values

95% and 99%
Test critical
Model Hypothesis Statistic values

Ay;=ag + vy T At + g -3.45 & -4.04
6.49 & 8.73
4.88 & 6.50

Ayi=ag + W t & -2.89 & -3.51
4.71 & 6.70

AY: = YWea t & -1.95 & -2.60
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Joint Tests

» Used to test joint hypothesese.g.a, =y =0
» Constructed like ordinary F-test

[RSS (restricted ) — RSS (unrestricted )|/ r
RSS (unrestricted) /(T —k)

g, =

= RSS(restricted) = error sums of squares from restricted model

= RSS(unrestricted) = error sums of squares from unrestricted
model

" = # restrictions
" T = # observations
= k = # parameters In unrestricted model
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Extensions of Dickey-Fuller

» AR(p) Process
Yi= T adYut. AoVt a Yipn T Y, T &
Add and subtract a,Y .,
"Yi= Gt Ayt A, et @t Q)Yip - R AY L T E
Add and subtract (&, ; + ;)Y
"Ye= At Ayt (@t ) AYipo - R AY i T &
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General Form of AR(p) Process

p
AY, =8y + W, 4+ ZﬁiAyt—Hl T &
=2

» 1Ty =0, equation has unit root (since all In
differences)

» Hence can use same Dickey-Fuller statistic
No Intercept or trend: <
Intercept, no trend: <,
Intercept and Trend: <.
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Problems With Dickey-Fuller

» How to handle MA terms
Invertibility: MA model —» AR() model
Said & Dickey: ARIMA(p,1,9) ~ ARIMA(n, 1, 0)
B < T1/3
» Require order of AR(p) process to estimate y

Start with long lag and pare down model using
standard t-tests
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Tests for Multiple Unit Roots

» Dickey & Pantula
Perform DF tests on successive differences

» E.g. 2 unit roots suspected
Form A%y, = a, + B,AY,, + &,
Use DF 7 statistic to test 3; = 0
If 3, differs from zero then test for single unit root
Form A%y, = a, + BiAYe. + BoYe, * &

Test null hypothesis: [3; = 0 using DF
= |f rejected, conclude {y, } Is stationary
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Phillips-Perron Tests

» Phillips-Perron generalizes DF to cover:
= Serially correlated errors and non-constant variance
Models: y, = a, +a,y,, +a,t +
= Test a, = 0 using standard DF critical values and statistic:

(

= D, = det(XTX), the determinant of the regressor matrix X
= S Is the standard error of the regression
" o IS the # of estimated correlations

Gm=—zu +— ZZU u,_,

s=1 t=s+1
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Problems In Testing for Unit Roots

» Low power of unit root tests

Can’t distinguish between unit root and near unit
root process

Too often indicate that process contains unit root

> Tests are conditional on model form

Tests for unit roots depend on presence of
deterministic regressors

Test for deterministic regressors depend on presence
of unit roots
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Unit Roots In FX Markets

» Purchasing power parity

Currency depreciates by difference between domestic
& foreign inflation rates

» PPP model
E, :pt'p*t+dt
= E. is log of dollar price of foreign exchange
= p, is log of US price levels

= p*.is log of foreign price levels
= d, represents deviation from PPP in period t

> Testing PPP
Reject if series {d.} is non-stationary
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Real Exchange Rates

» Real exchange rates
Define r,=e, + p*,- p,
PPP holds if {r.} is stationary
» Create series using:
r, = Ln(S; x WPIP, / WPIY>)
= S, IS the spot yen fx rate at time t

= WP, is the Japanese whole price index at time t (Feb
1973 = 100)

= WPIYS, is the US whole price index at time t
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Lab: Testing Purchasing Power Parity

» Worksheet: PPP
Series of real Yen FX rates 1973-89
» Dickey Fuller Test
Form series Ar, =a, + yr, + &
Estimate parameters using max. likelihood
Do T-Test
D-F test with critical value of -2.88
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Solution: Purchasing Power Parity

MLE SE t p Max Likelihood
a, 0.038 0.0203 1.881 6.14% AIC -291.35

vy -0.031 0.0173 -1.820 7.03% 2] (@ -288.04
DW 2.03
R? 1.6%

Adj. R? 1.1%

Portmanteau Tests
Q(24) p
Box-Pierce 26.83 26.32%
Ljung-Box 29.10 17.69%

> T-Test: Hy: y=0
Could reject at the 93% confidence level
= Conclude series Is stationary and PPP holds

» Dickey-Fuller
Can’t reject unit root hypothesis at 95% level
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Summary: Time Series Analysis

» Simple methods

Exponential smoothing, etc.
= Simple, low cost, often effective
= Limitations
— Query out of sample performance
— Underlying model not articulated

> ARIMA models

Staple of econometricians
Models articulated and testable

Limitations
= Estimation is non-trivial
= Problems with (near) random processes
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