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Overview 

 Time series data & forecasts 

 ARIMA models 

 Model diagnosis & testing 
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Time Series Data & Forecasting 
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Univariate Time Series Models 

 Autoregressive AR(1): 

 yt = a0 + a1yt-1 + et 

 Moving Average MA(1): 

 yt = et + b1et-1 

  et = sequence of independent random variables 

 Independent 

 Zero mean 

 Constant variance s2 
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White Noise 
 Mean is constant (zero) 

 E(et) = m  (0) 

 Variance is constant 

 Var(et) = E(et
2) = s2 

 Uncorrelated 

 Cov(et , et-j) = 0   for j < > 0 and t 

 Gaussian White Noise 

 If et is also normally distributed 

 Strict White Noise 

 et are independent 
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Lag Operator 

 Lm yt = yt-m 

 So AR(1) process can be represented as: 

 (1 - bL) yt = et   

 Invertibility 

 An AR(1) process can be represented as MA(): 

 If |b| < 1 

 yt = (1 - bL)-1 et 

 yt = [1 + bL + (bL)2 + . . . ] et 

 yt = et + b et-1 + b2
 et-2 + . . . 
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Stationarity 

 Weak (covariance) stationarity 

 Population moments are time-independent: 

 E(yt) = m 

Var(yt)  = s2 

 Cov(yt, yt-j) = gj 

 Example:  white noise et 

 Strong stationarity 

 In addition, yt is normally distributed 
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Stationary Series 

Stationary Series ~ N(0,1)

-3

-2

-1

0

1

2

3

0 5 10 15 20



Copyright © 1999-2011 Investment Analytics  Forecasting Financial Markets – Time Series Analysis Slide: 9 

Stationarity of AR(1) Process 

 AR(1) Process:  yt = a0 + a1yt-1 + et 

 Expected value E(yt) is time-dependent: 
 
 

 

 If |a1| < 1, then as t , process is stationary 

 Lim E(yt) = a0 / (1 - a1) 

 Hence mean of yt is finite and time independent 

 Also Var(yt) = E[et + a1et-1 + a1
2et-2+ . . . )2] 

 = s2[1 + (a1)
2 + (a1)

4 + . . .]  = s2/[1 - (a1)
2] 

 And Cov(yt, ys) = s2 (a1)
s /[1 - (a1)

2] 
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Stationarity Considerations 

 Sample drawn from recent process may not be 

stationary 

 Hence many econometricians assume process 

has been continuing for infinite time 

 Can be problematic 

 E.G. FX rate changes post Bretton-woods 
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Random Walk with Drift
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Random Walk Process 

 Random Walk with drift 

 yt = a0 + a1yt -1 + et 

With a1 = 1 

A non-stationary process 
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Random Walk Process 

 Random Walk without drift 

 yt = a0 + a1yt -1 + et 

With a1 = 1, a0 = 0 

  Dyt = et or yt = (1- L)-1et = et + et + et-1 + et-2 . . .   

 Also a non-stationary process 

Variance of yt  gets larger over time 

– Hence not independent of time. 
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Moving Average Process 

 MA(1) process 

 yt = et + bet-1  = (1 + bL)et  

 Invertibility:  |b| < 1 

 (1+bL)-1 yt = et  

 yt = S(-b) j yt-j + et  

 So MA(1) process with |b| < 1 is an infinite autoregressive 

process 

 Similary an AR(1) process with |b| < 1 is invertible  

 i.e. can be represented as an infinite MA process 
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MA(1) Process 

MA(1) Process
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ARMA(1, 1) Process 

 yt = a1yt-1 + et + bet-1 

ARMA(1, 1) Process yt = ayt-1 + e t + b e t-1
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General ARMA Process 

 Any stationary time series can be approximated by a 
mixed autoregressive moving average model  

 ARMA(p, q) 

 yt = f1yt-1 + f2yt-2 + . . . + fpyt-p +  
      et + q1et-1 + q2et-2 + . . . + qqet-q  

  F(L) yt = q(L)et   

  F and Q are polynomials in the lag operator L 

  F(L) = 1 - f1L - f2L
2 - .  .  . - fpL

p 

 Q(L)  1  q1L + q2L
2 + .  .  . + qqL

q 
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Unit Roots 

 Stationarity Condition 

 Roots of f(L) must lie outside the unit circle 

 |xi| > 1 for all roots xi 

 Invertibility Condition 

 Roots of q(L) must lie outside the unit circle 

 |zi| > 1 for all roots zi 
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Autocorrelation 
 Population autocorrelation between yt and  yt-t 

 rt  gt/g0 (t  1, 2, . . .) 

 gt is the autocovariance function at lag t 

  gt = Cov(yt , yt-t ) 

  g0 = Var (yt ) 

 r0 = 1, by definition 

 Sample autocorrelation: rt  ct/c0 

 Where ct is the sample autocovariance 
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ACF for AR(1) Process 

 AR(1) Process:  yt = a0 + a1yt-1 + et 

 Correlation: rs = (a1)
s , s = 0, 1, . . . 

Since: 

 g0   s2/[1 - (a1)
2] 

 gs   ss (a1)
s / [1 - (a1)

2] 
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ACF for AR(1) Process 

 a1 = 0.75 

 

 

 

 

 

 

 a1 = -0.75 

ACF for AR(1) Process
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ACF for MA(1) Process 

 MA(1) Process: yt = et + bet-1 

 Yule-Walker Equations 

 g0 = Var(yt) = E(yt yt ) = E[(et + bet-1) (et + bet-1)]  

   = (1 + b2)s2 

 g1 = E(yt yt-1) = E[(et + bet-1) (et-1 + bet-2)] = bs2 

 gs = E(yt yt-s) = E[(et + bet-1) (et-s + bet-s-1)] = 0,  s >1 

 ACF 

 r0 = 1 

 r1 =  b / (1 + b2) 

 rs = 0, for s > 1 
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ACF for MA(1) Process 

 b = 0. 5 

 

 

 

 

 

 

 b = -0.5 
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Partial Autocorrelation Function (PACF) 

 In AR(1) process yt and yt-2 are correlated 

 Indirectly, through yt-1  

 r2  = Corr(yt, yt-2)  = Corr(yt, yt-1)  * Corr(yt-1, yt-2)  = r1
2 

 Partial autocorrelation between yt and yt-s 

 Eliminates effects of intervening values yt-1 to yt-s+1 

 Effectively doing autoregression of yt against yt-1 to yt-s 

 yt =  S biyt-i + et 
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Calculating PACF 

 Form series y*t = yt - m  

  M is mean e{yt} 

 Form first-order autoregressive equation 

 Y*t = f11y*t-1 + et 

 et is error process which may not be white noise 

  f11 is both AC and PAC between yt and yt-1  

 Form second-order autoregressive equation 

 Y*t = f21y*t-1 + f22y*t-2  + et 

  F22  is PAC between yt and yt-2 , i.E autocorrelation between yt 
and yt-2 controlling (netting out) effect of yt-1 

 Repeat for all additional lags to obtain PACF 
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PACF by Yule-Walker 

 Form PACF from ACF 

 f11 = r1 , f22 = (r2 - r1
2) / (1 - r1

2) 

 Formula for additional lags s = 3, 4, . . . 
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PACF for AR and MA Processes 

 For AR(p) process 

 No direct correlation between yt and yt-s for s > p 

 Hence fss = 0 for s > p 

 Good means of indentifying AR(p) type process 

 For MA(1) process yt = et + bet-1  = (1 + bL)et  

 yt = S(-b) j yt-j + et  for |b| < 1 

 Hence yt is correlated with all its own lags 

 PACF will decay geometrically 

Direct if b < 0 

Alternating if b > 0 
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Lab: ARMA(1, 1) Process 

 ARMA(1, 1): yt = a1yt-1 + et + b1et-1 

 

 Lab: 

 Generate time series 

 Compute theoretical ACF 

Yule-Walker equations 

 Estimate sample ACF 

Autocorrel function 

 How does pattern of ACF depend on parameters? 
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Solution:  ARMA(1, 1) Process 

 Yule-Walker Equations 

  g0  =  E(yt yt)  =  a1E(yt-1 yt)+ E(et yt) + b1E(et-1 yt) 

     = a1g1 + s2 + b1E[et-1(a1yt-1 + et + b1et-1)] 

   =  a1g1 + s2 + b1(a1+ b1 ) s
2 

  g1  =  E(yt yt-1)  = a1E(yt-1 yt-1)+ E(et yt-1) + b1E(et-1 yt-1) 

    = a1 g0 +  b1 s
2 

  gs  =  E(yt yt-s)  = a1E(yt-1 yt-s)+ E(et yt-s) + b1E(et-1 yt-s) 

      = a1 gs-1  

 Solution 
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ACF for ARMA(1, 1) Process 

 a1 = b1 = 0.5 

 

 

 

 

 a1 = 0.6,  

b1 = -0.95 
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PACF for ARM(1,1) Process 

 a1 = b1 = 0.5 

 

 

 

 

 

 a1 = 0.7,  

b1 = -0.3 
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Properties of ACF and PACF 

Process  ACF    PACF 
White Noise  All rs = 0   All fss = 0 

AR(1): a > 0  Geometric decay: r1 = as  f11 = r1; fss = 0; s>1 

AR(1): a < 0  Oscillating decay: r1 = as  f11 = r1; fss = 0; s>1 

MA(1): b > 0  +ve spike at lag 1.   Oscillating decay  

    r0 = 0 for s > 1   f11 > 0 

MA(1): b < 0  -ve spike at lag 1.   Decay   

     r0 = 0 for s > 1   f11 > 0 

ARMA(1,1): a < 0 Geometric decay at lag 1 Osc. decay at lag 1 

    Sign r1 = sign(a+b)   f11 = r1 

ARMA(1,1): a > 0 Oscillating decay at lag 1 Geom. decay at lag 1 

    Sign r1 = sign(a+b)   f11 = r1 
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Box-Jenkins Methodology 

 Phase I - identification 

 Identify appropriate models 

 Phase II - estimation & testing 

 Estimate model parameters 

 Check residuals 

 Phase III application 

 Use model to forecast 
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Phase I - Identification 

 Data preparation 

 Transform data to stabilise variance 

 Difference data to obtain stationary series 

 Model selection 

 Examine data, ACF and PACF to identify 

potential models 
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Phase II - Estimation & Testing 

 Estimation 

 Estimate model parameters 

 Select best model using suitable criterion 

 Diagnostics 

 Check ACF/PACF of residuals 

 Do portmanteau test of residuals 

 Are residuals white noise? 

 If not, return to phase I (model selection) 
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Model Selection Criteria 
 Two objectives 

 Minimize sums of squares of residuals 

 Can always reduce by adding more parameters 

 Parsimony 

Avoid excess paramterization 

– I.E. Loss of degrees of freedom 

 Better forecasting performance 

 Solution 

 Penalize the likelihood for each additional term 
added to model 
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Likelihood Function 

 Assume yt ~ No(m, s2)  

 Likelihood 

 L = (-n/2)[Ln(2) +Ln(s2)] - (1/2s2)S(yt - m)2 

 Maximizing wrt m, s2: 

 MLE Estimates 

  m = Syt / n 

  (s)2  = S(yt - m)2 / n 
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Likelihood Function in Regression 
 Simple Linear Regression:  yt = bxt + et 

 et ~ IID No(0, s2) 

 Likelihood 

 L = (-n/2)[Ln(2) +Ln(s2)] - (1/2s2)S(yt - bxt)
2 

 MLE Estimates 

  (s)2 = S(et)
2 / n 

  b  S(xtyt ) / S(xt )
2 

 Standard Error 

  sb  = s / {S(xt - xmean)
2}1/2 
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Maximum Likelihood Estimation 

 Akaike information criterion (AIC) 

 AIC = -2Ln(Likelihood) + 2m  

    nLn(SSE) + 2m 

 Schwartz Bayesian information criterion (BIC) 

 BIC  = -2Ln(Likelihood) + mLn(n) 

    nLn(SSE) + mLn(n)  

 L is likelihood function 

 SSE is error sums of squares 

 n is number of observations 

 m is number of model parameters 
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Using MLE Model Criteria 

 When comparing models: 

 N should be kept fixed 

 E.G. With 100 data points estimate an AR(1) and 
AR(2) using only last 98 points. 

 Use same time period for all models 

 AIC and BIC should be as small as possible 

What matter is comparative value of AIC or BIC  

 BIC has better large sample properties 

AIC will tend to prefer over-paramaterized models 
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Sums of Squares 

 Sums of Squares 

 Due to Model = SSM 

 

 

 Due to Error = SSE 

 

 

 Total Sums of Squares  = SST = SSM + SSE 
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ANOVA and Goodness of Fit 

 F test statistic = MSR/MSE  

 With 1 and n-m-1 degrees of freedom 

 n is #observations, m is # independent variables 

 Large value indicates relationship is statistically significant 
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Coefficient of Determination  

 R2 = SSR/SST 

 How much of total variation is explained by 

regression 

 Adjusted R2  

 Adjusted R2  =  1 - (1 - R2 )  (n - 1) / (n - m - 1) 

 Idea: R2 can always increase by adding more variables 

 Penalize R2 for loss of degrees of freedom 

  Useful for comparing models with different # independent 

variables m 
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Diagnostic Checking 
 You need to check residuals: ei = (yi - fi) 

 Residual = actual - forecast 

 Residual plot:  residual vs. actual 
 Residual plot should be random scatter around zero 

 If not, it implies poor fit, confidence intervals invalid 

 However, estimates are still the best we can achieve, but we can’t say 
how good they are likely to be. 

 Test for: 

 Bias:  non-zero mean 

 Heteroscedasticity (non-constant variance) 

 Non-normality of residuals 
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Residual Plot 
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Residual Plot - Bias 
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Residual Plot - Heteroscedasticity 
R

es
id

u
al

 

Ft 



Copyright © 1999-2011 Investment Analytics  Forecasting Financial Markets – Time Series Analysis Slide: 48 

Anderson, Bartlett & Quenoille 

 ACF and PACF coefficients ~ No(0, 1/n) 

 If data is white noise 

 Hence 95% of coefficients lie in range 1.96/n 

Stationary Series ACF
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Durbin-Watson Test 

 Check for serial autocorrelation in residuals 

 Range:  0 to 4.  DW  2 for white noise 
 Small values indicate +ve autocorrelation 

 Large values indicate -ve autocorrelation 

 NB not valid when model contains lagged values of yt 

 Use DW-h = (1 - DW/2){n/[1-nsa]} ~ no(0,1) for large n 

–  Sa is the standard error of the one-period lag coefficient a1 
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Portmanteau Tests:  Box-Pierce 

 Simultaneous tests of ACF coefficients to see if 

data (residuals) are white noise 

 Box-Pierce 

 

 

Usually h  20 is selected 

 Used to test autocorrelations of residuals 

 If residuals are white noise the Q ~ c2(h-m) 

m is number of model parameters (0 for raw data) 
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Portmanteau Tests:  Ljung-Box 

 More accurate for small n 
 
 
 
 
 

 If data is white noise then Q* ~ c2(h-m) 

 Usual to conclude that data is not white noise if 
Q exceeds 5% of right hand tail of c2 distn. 


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Tests for Normality 

 Error Distribution Moments 

 Skewness: should be ~ 0 

 Kurtosis:  should be ~ 3 

 Jarque-Bera Test 

 J-B = n[Skewness / 6 + (Kurtosis – 3)2 / 24]  

 J-B ~ c2(2) 
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Lab:  Box-Jenkins Analysis 

 Test Data Set 1 
 Fit ARMA model using  

 Using box Jenkins methodology 

 Compute & examine ACF and PACF 

 Estimate MLE model parameters 

Check residuals using portmanteau tests 

How good is your model at forecasting? 

 Time Series and Forecast
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Solution: Box-Jenkins Analysis 

 Test Data Set 1 

 ACT and PACF suggest AR(1) Model 

ACF and PACF - Time Series
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Solution: Box-Jenkins Analysis 

 Test Data Set 1 

 MLE Estimate:  a = 0.766 

 Residuals are white noise: 

ACF & PACF - Residuals
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Forecast Function 

 E.g. AR(1) process:  yt+1 = a0 + a1yt + et+1 

 Forecast Function 

 Et(yt+1) = a0 + a1yt 

 Et(yt+j) = Et(yt+j | yt , yt-1, yt-2, . . . , et, et-1 , . . .) 

 Et(yt+2) = a0 + a1 Et(yt+1) = a0 + a0a1 + a1
2yt 

 Et(yt+j) = a0(1 + a1 + a1
2 + . . . + a1

j-1) + a1
2yt  a0/(1- a1) 
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Forecast Error 

 J-step ahead forecast error:   ht(j)  = yt+j - Et(yt+j) 

 ht(1)  = yt+1 - Et(yt+1) = et+1  

 ht(2)  = yt+2 - Et(yt+2) = et+2 +  a1et+1  

 ht(j)  = et+j +  a1et+j-1 +  a1
2et+j-2 +  . . . + a1

j-1et+1 

 Forecasts are unbiased 

 Et[ht(j)] = E[et+j +  a1et+j-1 +  a1
2et+j-2 +  . . . + a1

j-1et+1] = 0 
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Confidence Intervals 

 Forecast Variance 

 Var[ht(j)] = s2[1j +  a1
2

 +  a1
4

 +  . . . + a1
2(j-1)]  s2/(1- a1

2
 ) 

 Forecast variance is an increasing function of j 

 In limit, forecast variance converges to variance of {yt} 

 Confidence Intervals 

 Var[ht(1)] = s2 

Hence 95% confidence interval for yt+1 is  a0 + a1yt  1.96s 
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Non-Stationarity 

 Non-stationarity in the mean 

 Differencing often produces stationarity 

 E.g. if yt is random walk with drift, Dyt is stationary 

 Differencing Operator: Dd 

Difference yt d times to yield stationary series Dd(yt) 

– For most economic time series d = 1 or 2 is sufficient 

 Non-stationarity in the variance 

 Use power or logarithmic transformation 

E.g. Stock returns rt = Ln(Pt+1 / Pt) 
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ARIMA Models 
 ARIMA(p,d,q) models 

 Autoregressive Integrated Moving Average 

 d is the order of the differencing operator required to produce 

stationarity (in the mean) 

 Many economic time series are modeled ARIMA(0,1,1) 

 Dyt = a0 + et + b1et-1 

 e.g. GDP, consumption, income 
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Seasonal Models 

 Box-Jenkins technique for seasonal models 

 No different than for non-seasonal 

 Seasonal coefficients of the ACF and PACF 

appear at lags s, 2s, 3s, . .  

 Examples of Seasonal Models 

 Additive 

 yt  = a1 yt-1 + a4(yt-4) + et  

 yt  =  et + b4(et-4) + et 

 Multiplicative 

 (1 - a1L)(1 - a4L
4)yt  = (1 - b1L)et 

 Captures interactive effects in terms e.g. (a1a4 yt -5) 
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How to Model Seasonal Data 

 Explicitly in model 

 With AR and/or MA terms at lag S 

 Seasonal differencing 

 Difference series at lag S to achieve (seasonal) 

stationarity 

 E.g. for monthly seasonality form y*t  = yt - y12  

Model resulting stationary series y*t  in usual way 
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Lab:  Modelling the US Wholesale 

Price Index 
US Wholesale Prices Index (1985 = 100)
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Lab:  US Wholesale Price Index 
 Data preparation 

 Clearly non-stationary in mean and variance 

 Consider DLn(WPI)  

 Identification for transformed series 

 Examine transformed series, ACF and PACF 

 Seasonal (quarterly) 

 Model estimation & testing 

 AR(2) 

 ARMA(1,1) 

 ARMA(2,1) with seasonal term at lag 4 
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Solution:  US Wholesale Price Index 

 Best model is seasonal ARMA[1, (1,4)] 

 yt =  0.0025+ 0.7700yt-1 + et –0.4246et-1 + 0.3120et-4 

Model a0 a1 a2 b1 b4 AIC BIC Adj. R
2

AR(1) 0.0013 0.0738 -497.3 -494.4 33.3%

0.04% 0.00%

AR(2) 0.0035 0.4423 0.2345 -502.3 -496.6 36.4%

0.52% 0.00% 0.46%

ARMA(1,(1,4)) 0.0025 0.7700 -0.4246 0.3120 -511.0 -502.6 42.7%

5.96% 0.03% 3.48% 0.07%

ARMA(2,(1,4)) 0.0025 0.7969 -0.0238 -0.4411 0.3132 -509.0 -497.8 42.3%

6.25% 0.02% 43.38% 2.98% 0.06%
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Solution:  US Wholesale Price Index 

Changes in Log(Wholesale Prices Index)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129

Actual

Forecast



Copyright © 1999-2011 Investment Analytics  Forecasting Financial Markets – Time Series Analysis Slide: 67 

Regression Models 

 Linear models of form: 

 Yt = b0 + b1X1t + b2X2t + . . . + bmXmt + et  

 

 {et }is strict white noise process 

 Xi are independent, explanatory variables 

May or may not be causal 
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 Pesaran & Timmermann (1974) 
 
 

 Yt is excess return on S&P500 over the 1-month T-Bill rate. 

 YSP is the dividend yield, defined as: 
  12-month average dividend / month-end S&P500 Index value 

 PI12 is the rate of change of the 12-month moving average of 
the producer price index: 

 PI12 = Ln{PPI12 / PPI12(-12)} 

DI11 is the change in the 1-month T-Bill rate 

DIP12 is the rate of change of the 12-month moving average 
of the index of industrial production 

– DIPI12 = Ln{IP12 / IP12(-12)} 

 

Example:  Regression Model for 

Excess Equity Returns 

tttttt DIPDIPIYSPY ebbbbb   241322110 121112
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Regression Methods 

 Standard Method 

 Use all data 

 Problem: data dependent; structural change 

 Stepwise 

 Forward: start with minimal model, add variables 

 Backward: start with full model and eliminate variables 

 Estimate contribution  of individual variables 

 Rolling/ Recursive 

 Re-estimate regression over overlapping, successive fixed-
length periods 

 Re-estimate regression after adding each new period’s data 

 Useful for ex-ante estimation & out of sample forecasting 
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Lab:  Recursive Regression Prediction 

of Excess Equity Returns 

 Replicate part of Pesaran & Timmermann study 

 Monthly SP500 excess returns 1954 – 1992 

 Use recursive regression & ex-ante variables 

 Examine forecasting performance 

 Develop trading system 
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Recursive Parameter Estimates 

Recursive Parameter Estimation
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Parameter Estimates & ANOVA 

PARAMETERS -0.024 14.338 -0.280 -0.007 -0.159

SE 0.010 3.424 0.065 0.003 0.040

t-statistic -2.442 4.188 -4.321 -2.763 -3.941

Prob 1.497% 0.003% 0.002% 0.595% 0.009%

ANOVA

R
2

8.6%

Correl 20.7%

F 10.82 DF 461.00 Prob 0.000%
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Residuals 
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Trading System Performance 

S&P500 Cumulative Trading Returns
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Random Walk Model 

 Special case of AR(1) with a0 = 0 and a1 = 1 

 yt  =  yt-1 + et  

 yt  =  y0 + Sei    for i = 1, . . . , t 

 Mean is Constant 

 E(yt)  =  E(y0)  + E(Sei )  = y0 

 Conditional Mean = yt 

 yt+s  =  yt + Set+i   for i = 1, . . . , s 

 Et(yt+s)  =  yt  + Et(Set+i ) = yt 
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Shocks and Random Walks 

 Series is permanently affected by shocks 

 et has non-decaying effect on {yt} 

 Variance is time-dependant 

 Var(yt)  =  Var(Set )  =   ts2   

Hence non-stationary 

 Covariance 

 E[(yt - y0)(yt-s - y0)  = E[(Sei )(et-s + et-s-1 + . . . e1)] 

    =  E[(et-s)
2 + . . . + (e1)

2] 

        gt-s =  (t - s)s2 
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Correlation of Random Walk Process  

  

 Correlation: rs  =  [(t-s)/t]1/2   

 For small s,  (t-s)/t  1 

 As s increases, rs will decay very slightly 

 Identification Problem 

 Can’t use ACF to distinguish between a unit root 

process (a1 = 1) and one in which a1 is close to 1 

Will mimic an AR(1) process with a near unit root 
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Testing for Random Walk 

 AR process yt  = a1yt-1 + et  

 Hypothesis test a1 = 0 

 Can use t-test 

OLS estimate of a1 is efficient 

 Because |a1| < 1 and {et} is white noise 

 Hypothesis test a1 = 1;  can’t use t-test 

 {yt } is non-stationary:  yt  = Sei 

 Variance becomes infinitely large 

 OLS estimate of a1 will be biased below true value 

 a1 ~ r1  =  [(t-1)/t]1/2 < 1 
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Random Walk Example 

 Appears stationary 

 ACF decays to zero 
Random Walk with Drift:   yt = yt-1 + e t
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Dickey-Fuller Methodology 

 Use Monte-Carlo 

 Generate 10,000 unit root processes {yt } 

 Estimate parameter a1  

 Estimate confidence levels: 

 90% of estimates are less than 2.58 SE from 1 

 95% of estimates are less than 2.89 SE from 1 

 99% of estimates are less than 3.51 SE from 1 

 Test Example 

 Suppose we have series for which estimated value of 

parameter a1 is 2.95 SE < 1 

 Reject hypothesis of unit root at 5% level  

   



Copyright © 1999-2011 Investment Analytics  Forecasting Financial Markets – Time Series Analysis Slide: 81 

Dickey-Fuller Tests 

 Unit Root Process: yt  = a1yt-1 + et  

 Equivalent form  

 Dyt  = gyt-1 + et 

  g = 1 - a1   

 Test: g = 0   

 Equivalent to testing a1 = 1 

 Other unit root regression models 

 Dyt  = a0 + gyt-1 + et  

 Dyt  = a0 + gyt-1 + a2t + et 



Copyright © 1999-2011 Investment Analytics  Forecasting Financial Markets – Time Series Analysis Slide: 82 

Dickey-Fuller Test Procedure 

 Test Procedure 

 Estimate g  using OLS 

 Compute t-statistic 

Divide OLS estimate by SE 

 Compare t-statistic with appropriate critical 

value in Dickey-Fuller tables  

 Critical value depends on 

 sample size 

 form of model 

 confidence level 
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Critical Values 

Model Hypothesis

Test 

Statistic

95% and 99% 

critical 

values

Dyt = a0 + gyt-1 + a2t + et
g = 0 tt -3.45 & -4.04

g = a2 = 0 f3 6.49 & 8.73

 a0  g = a2 = 0 f2 4.88 & 6.50

Dyt = a0 + gyt-1 +  et
g = 0 tm -2.89 & -3.51

 a0  g =  0 f1 4.71 & 6.70

Dyt =  gyt-1 +  et
g = 0 t -1.95 & -2.60
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Joint Tests 

 Used to test joint hypotheses e.g. a0 = g = 0 

 Constructed like ordinary F-test 

 

 

 
 RSS(restricted) =  error sums of squares from restricted model 

RSS(unrestricted) =  error sums of squares from unrestricted 

model 

 r = # restrictions 

 T = # observations 

 k = # parameters in unrestricted model 

[ 
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Extensions of Dickey-Fuller 

 AR(p) Process 

 yt  =  a0 + a1yt-1 + . . . + ap-2yt-p+2 + ap-1yt-p+1 + apyt-p + et  

 Add and subtract apyt-p+1  

 yt  =  a0 + a1yt-1 + . . . + ap-2yt-p+2 + (ap-1 + ap)yt-p+1 - ap Dyt-p+1 + et 

   Add and subtract (ap-1 + ap)yt-p+2  

 yt  =  a0 + a1yt-1 + . . . -(ap-1 + ap) Dyt-p+2 - ap Dyt-p+1 + et 
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General Form of AR(p) Process 

 If g = 0, equation has unit root (since all in 

differences) 

 Hence can use same Dickey-Fuller statistic 

 No intercept or trend:  t 

 Intercept, no trend:  tm 

 Intercept and Trend: tt 


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Problems With Dickey-Fuller 

 How to handle MA terms 

 Invertibility:  MA model  AR() model 

 Said & Dickey:  ARIMA(p,1,q)  ARIMA(n, 1, 0) 

N  T1/3 

 Require order of AR(p) process to estimate g 

 Start with long lag and pare down model using 

standard t-tests 
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Tests for Multiple Unit Roots 

 Dickey & Pantula 

 Perform DF tests on successive differences 

 E.g. 2 unit roots suspected 

 Form D2yt  =  a0 + b1Dyt-1 + et  

 Use DF t statistic to test b1 = 0 

 If b1 differs from zero then test for single unit root 

 Form D2yt  =  a0 + b1Dyt-1 + b2yt-2 + et  

 Test null hypothesis: b1 = 0 using DF 

 If rejected, conclude {yt } is stationary 
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Phillips-Perron Tests 

 Phillips-Perron generalizes DF to cover: 
 Serially correlated errors and non-constant variance 

 Models:  yt  =  a0 + a1yt-1 + a2t + mt  

 Test a1 = 0 using standard DF critical values and statistic:  

 

 

 

DX = det(XTX), the determinant of the regressor matrix X 

 S is the standard error of the regression 

  w is the # of estimated correlations   
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Problems in Testing for Unit Roots 

 Low power of unit root tests 

 Can’t distinguish between unit root and near unit 
root process  

 Too often indicate that process contains unit root 

 Tests are conditional on model form 

 Tests for unit roots depend on presence of 
deterministic regressors 

 Test for deterministic regressors depend on presence 
of unit roots 
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Unit Roots In FX Markets 
 Purchasing power parity 

 Currency depreciates by difference between domestic 
& foreign inflation rates 

 PPP model 

 Et  = pt - p*t + dt 

 Et is log of dollar price of foreign exchange  

 pt is log of US price levels 

 p*t is log of foreign price levels 

 dt represents deviation from PPP in period t 

 Testing PPP 

 Reject if series {dt} is non-stationary 
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Real Exchange Rates 

 Real exchange rates 

 Define rt  et + p*t - pt  

 PPP holds if {rt} is stationary 

 Create series using: 

 rt  =  Ln(St x WPIJP
t / WPIUS

t) 

 St is the spot yen fx rate at time t 

WPIJP
t is the Japanese whole price index at time t (Feb 

1973 = 100) 

WPIUS
t is the US whole price index at time t 
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Lab:  Testing Purchasing Power Parity 

 Worksheet: PPP 

 Series of real Yen FX rates 1973-89 

 Dickey Fuller Test 

 Form series Drt  = a0 + grt-1 + et  

 Estimate parameters using max. likelihood 

 Do T-Test  

 D-F test with critical value of -2.88  
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Solution: Purchasing Power Parity 
MLE SE t p

a0 0.038 0.0203 1.881 6.14% AIC -291.35

g -0.031 0.0173 -1.820 7.03% BIC -288.04

DW 2.03

m 1 R
2

1.6%

n 202 Adj. R
2

1.1%

ANOVA DF SS MS F p

Model 1 0.0039 0.00388 3.31 7.03% Q(24) p

Error 200 0.2340 0.00117 Box-Pierce 26.83 26.32%

Total 201 0.2379 Ljung-Box 29.10 17.69%

Max Likelihood

Portmanteau Tests

 T-Test:  H0:  g = 0 

 Could reject at the 93% confidence level 

 Conclude series is stationary and PPP holds 

 Dickey-Fuller 

 Can’t reject unit root hypothesis at 95% level 
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Summary:  Time Series Analysis 

 Simple methods 

 Exponential smoothing, etc. 

 Simple, low cost, often effective 

 Limitations 

– Query out of sample performance 

– Underlying model not articulated 

 ARIMA models 

 Staple of econometricians 

 Models articulated and testable 

 Limitations 

 Estimation is non-trivial 

 Problems with (near) random processes 

 

 

 


