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Ordinary Least Squares Regression

OLS Model Framework

The problem framework is one in which we have observations {y1,y2, . . . , yn} from a random variable Y which
we are interested in predicting, based on the observed values {{x11,x21,  .  .  .  ,  xn,1}, {x12,x22,  .  .  .  ,  xn,2}, . .  .  ,

{x1 p,x2 p, . . . , xn,p}, from p independent explanatory random variates {X1, X2, . . . , Xp}.  Our initial assumption is

that the Xiare independent, but relax that condition and consider the case of collinear (i.e. correlated) explanatory
variables in the general case.
We frame the problem in matrix form as:

Y = XΒ + Ε,

where Ε is assumed ~ No@0, ΣD
Y is the @n �1D matrix of observations yi

X is the @n �pD matrix of observations xij

and Β is an unknown @p � 1D vector of coefficients to be estimated

The aim is to find a solution which minimizes the mean square error: 
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In Mathematica there are several ways to accomplish this, for example:

OLSRegression@Y_, X_D:=Module@
8XT=Transpose@XD<,

Z=LinearSolve@XT.X,XT.YD
D

The Problem of Collinearity

Difficulties begin to emerge when the assumption of independence no longer applies.  While it is still possible to
conclude whether the system of explanatory variables X has explanatory power as a whole, the correlation between
the variables means that it no longer possible clearly distinguish the significance of individual variables.  Estimates
of the beta coefficients may be biased, understating the importance of some of the variables and overstating the
importance of others.
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Example of Collinear Variables

This example is based on the original paper on lasso regression (Tibshirani, 1996) and a subsequent paper by Zou
and Hastie (2004).  We have 220 observations on eight predictors.  We  use the first 20 observations for model
estimation and the remaining 200 for out-of-sample testing.  We fix the parameters Β and Σ and set the correlation

between variables  X1, and X2 to be 0.5 i- j¤ as follows:

nObs = 200; Σ = 3; Β = 83, 1.5, 0, 0, 2, 0, 0, 0<;

S = TableA0.5Abs@i-jD, 8i, 1, 8<, 8j, 1, 8<E �� MatrixForm

1. 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125

0.5 1. 0.5 0.25 0.125 0.0625 0.03125 0.015625

0.25 0.5 1. 0.5 0.25 0.125 0.0625 0.03125

0.125 0.25 0.5 1. 0.5 0.25 0.125 0.0625

0.0625 0.125 0.25 0.5 1. 0.5 0.25 0.125

0.03125 0.0625 0.125 0.25 0.5 1. 0.5 0.25

0.015625 0.03125 0.0625 0.125 0.25 0.5 1. 0.5

0.0078125 0.015625 0.03125 0.0625 0.125 0.25 0.5 1.

Ε = RandomVariate@d = NormalDistribution@0, ΣD, nObsD;

X = RandomReal@8-100, 100<, 8nObs, 8<D;

Y = X.Β + Ε;

Histogram@YD
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In the context of collinear explanatory variables, our standard OLS estimates will  typically be biased.  In this
examples,  notice  how  the  relatively  large  correlations  between  variables  1-4  induces  upward  bias  in  the
estimates of the parameters Β3 and Β4, (and downward bias in the estimates of the parameters Β6 and Β7.

Β0
`

= OLSRegression@Take@Y, 20D, Take@X, 20DD
83.00439, 1.50906, 0.0145471, 0.0383589, 1.9809, -0.0106091, -0.00378074, -0.00259506<
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Generalized Regression

Penalized OLS Objective Function

We attempt to deal with the problems of correlated explanatory variables by introducing a penalty component to
the OLS objective function.  The idea is to penalize the regression for using too many correlated explanatory
variables, as follows:
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In[819]:=
WLS@Y_, X_, Λ_, Α_, Β_D := ModuleB

8n = Length@YD, m = Length@ ΒD, W, P<,

Z = Y - X.Β;

W =

1

n

Z.Z;
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+ Α Abs@Β@@iDDD ;
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Nonstandard Regression Types

In the above framework:

è Α=0  ridge regression

è Α=1  lasso regression

è Α Ε (0, 1) elastic net regression

We use the Mathematica NMinimze function to find a global minimum of the WLS objective function, within a
specified range for Α, as follows:

GeneralRegression@Y_, X_, Λ_, ΑRange_D := Module@
8nIndep = Last@Dimensions@XDD, b<,

b = Table@Unique@bD, 81 + nIndep<D;

Reg = NMinimize@
8WLS@Y, X, Λ, b@@1DD, Drop@b, 1DD, ΑRange@@1DD b b@@1DD b ΑRange@@2DD<, bD;

coeff = b �. Last@RegD;

8Reg@@1DD, coeff@@1DD, Drop@coeff, 1D<
D

NMinimze employs a variety of algorithms for constrained global optimization, including Nelder-Mead, Differen-

tial Evolution, Simulated Annealing and Random Search.  Details can be found here.

The GeneralRegression function returns the minimized WLS value, the optimal Α parameter (within the constraints
set by the user), and the optimal weight vector Β.
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Reproducing OLS Regression

Here we simply set Λ=0 and obtain the same estimates Β0
`

 as before (note that the optimal Α value is negative):

GeneralRegression@Take@Y, 20D, Take@X, 20D, 0, 8-20, 20<D
84.52034, -5.47031, 83.00439, 1.50906, 0.0145471,

0.0383589, 1.9809, -0.0106091, -0.00378074, -0.00259506<<

Ridge Regression

Here we  set Λ=1 and constrain Α = 0.  Note that the value of the penalized WLS is significantly larger than in 
the OLS case, due to the penalty term PΑ

GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 80, 0<D
812.134, 0., 83.00387, 1.50879, 0.0145963,

0.0385133, 1.98083, -0.0105296, -0.00378282, -0.00267926<<

Lasso Regression

Here we  set Λ=1 and constrain Α = 1.  Note that the value of the penalized WLS is lower than Ridge regression:

GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 81, 1<D
811.0841, 1., 83.00424, 1.50904, 0.0143872,

0.0381963, 1.98082, -0.010514, -0.00360641, -0.00248904<<

Elastic Net Regression

Here we  set Λ=1 and constrain Α to lie in the range (0, 1).  In this case the optimal value of Α = 1, the same as 
for lasso regression:

GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 80, 1<D
811.0841, 1., 83.00424, 1.50904, 0.0143872,

0.0381963, 1.98082, -0.010514, -0.00360641, -0.00248904<<

Generalized Regression

Here we  set Λ=1 and constrain Α to lie in a wider subset of R, for example (-5, 5):

GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 8-20, 20<D
9-9.42129, 20., 93.01909, 1.51991, -8.01608 ´ 10-9,

-1.28294 ´ 10-8, 2.01397, 0.0370202, -6.15894 ´ 10-9, -8.15124 ´ 10-9==
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Empirical Test
We conduct  an empirical  test  of  the accuracy of  the various regression methods,  by simulating 100 data  sets
consisting of 220 observations (20 in-sample, 200 out-of-sample), with regressors and parameters as before.  For
each of the regression methods we calculate the MSE from the out-of-sample data, using coefficients estimated
using the in-sample data. 

First, create a function to calculate the Mean Square Error:

MSE@Y_, X_, b_D := Module@
8nObs = Length@YD, Z = Y - b.Transpose@XD<,
Z.Z �nObs

D

Now create a test program to run multiple samples:

In[837]:=
i = 1; nEpochs = 100; MSS0 = Table@Æ, 8nEpochs<D; MSS1 = Table@Æ, 8nEpochs<D;

MSS2 = Table@Æ, 8nEpochs<D; MSS3 = Table@Æ, 8nEpochs<D; MSS4 = Table@Æ, 8nEpochs<D;

While @i b nEpochs,

Ε = RandomVariate@d = NormalDistribution@0, ΣD, nObsD;

X = RandomReal@8-100, 100<, 8nObs, 8<D;

Y = X.Β + Ε;

Parallelize@
b0 = Last@GeneralRegression@Take@Y, 20D, Take@X, 20D, 0, 8-20, 20<DD;

b1 = Last@GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 80, 0<DD;

b2 = Last@GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 81, 1<DD;

b3 = Last@GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 80, 1<DD;

b4 = Last@GeneralRegression@Take@Y, 20D, Take@X, 20D, 1, 8-20, 20<DD;

MSS0@@iDD = MSE@Drop@Y, 20D, Drop@X, 20D, b0D;

MSS1@@iDD = MSE@Drop@Y, 20D, Drop@X, 20D, b1D;

MSS2@@iDD = MSE@Drop@Y, 20D, Drop@X, 20D, b2D;

MSS3@@iDD = MSE@Drop@Y, 20D, Drop@X, 20D, b3D;

MSS4@@iDD = MSE@Drop@Y, 20D, Drop@X, 20D, b4DD; i++D;

MSS = 8MSS0, MSS1, MSS2, MSS3, MSS4<;

The average out-of-sample MSE for each regression method is shown in the cell below.  The average MSE for the
Generalized regression is significantly lower than for other regression techniques.

In[842]:=
NumberForm@8Mean@MSS0D, Mean@MSS1D, Mean@MSS2D, Mean@MSS3D, Mean@MSS4D<, 84, 2<D

Out[842]//NumberForm=

814.69, 14.66, 14.51, 14.51, 13.23<

The lower MSE is achieved by lower estimated values for the zero Β coefficients:
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In[849]:= 8b0, b1, b2, b3, b4< �� MatrixForm

Out[849]//MatrixForm=

3.01483 1.51507 -0.00115002 0.00488936 2.01666 0.00341592 -0.0162198 0.0178543

3.01352 1.51359 -0.000842353 0.00413787 2.01553 0.00262603 -0.0161391 0.0176154

3.01417 1.51359 -0.000769123 0.00413357 2.01575 0.00240096 -0.0160634 0.0174478

3.01417 1.51359 -0.000769123 0.00413357 2.01575 0.00240096 -0.0160634 0.0174478

3.02687 1.51527 -5.25723 ´ 10-10 0.00477497 2.02069 1.28321 ´ 10-7
-0.0145281 0.0146673

A comparison of the histograms of the MSE’s for each of the regression methods underscores the superiority of the
Generalized Regression technique:

In[844]:=
SmoothHistogram@MSS, PlotLabel ® "Mean Square Errors HOut of SampleL"D

Out[844]=
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