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Over the last twenty five years significant advances have been made in the theory of asset processes 
and there now exist a variety of mathematical models, many of them computationally tractable, that 
provide a reasonable representation of their defining characteristics.

While the Geometric Brownian Motion model remains a staple of stochastic calculus theory, it is no 

longer the only game in town.  Other models, many more sophisticated, have been developed to 

address the shortcomings in the original.  There now exist models that provide a good explanation of 
some of the key characteristics of asset processes that lie beyond the scope of models couched in a 

simple Gaussian framework. Features such as mean reversion, long memory, stochastic volatility,  
jumps and heavy tails are now readily handled by these more advanced tools.

In this post I review a critical selection of asset process models that belong in every financial engineer’s 
toolbox, point out their key features and limitations and give examples of some of their applications.
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The starting point for this examination of stochastic processes is the ubiquitous GBM process, which is 
a continuous-time and continuous-state random process.

The state x(t) of a geometric Brownian motion satisfies an Ito differential equation 

, where ω(t) follows a standard Wiener process. 

We begin by simulating a GBM process with zero drift and volatility of 10%:

data = RandomFunction[GeometricBrownianMotionProcess[0, .1, 100], {0, 10, .01}]

TemporalData ����� � �� ��
���� ������� ���� ������ � 



ListLinePlot[data, Filling → Axis]
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The mean of a GBM process is give by:

Mean[GeometricBrownianMotionProcess[μ, σ, x0][t]] // Simplify

ⅇt μ x0

And its variance is given by:

Variance[GeometricBrownianMotionProcess[μ, σ, x0][t]] // Simplify

ⅇ2 t μ -1 + ⅇt σ2 x02

Note that a GBM process is not weakly stationary:

WeakStationarity[GeometricBrownianMotionProcess[μ, σ, x0]]

False

The process covariance is time-dependent:

CovarianceFunction[GeometricBrownianMotionProcess[μ, σ, x0], s, t]

ⅇ(s+t) μ -1 + ⅇσ2 Min[s,t] x02
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Plot3D[CovarianceFunction[GeometricBrownianMotionProcess[0, .6, .3], s, t],
{s, 0, 5}, {t, 0, 5}, ColorFunction → "Rainbow"]
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Let’s apply the GBM model concept for a specific stock, such as Apple.  We’ll use weekly closing prices 
since mid-2016, to capture the recent trend in the stock.

data = FinancialData["AAPL", "Close", {{2016, 7, 1}, {2017, 2, 8}, "Week"}];
tsAAPL = TimeSeries[data[[All, 2]], {data[[1, 1]], Automatic, "Week"}]

TimeSeries ����� �� ��� ���� �� �� ��� ����
���� ������� �� 

DateListPlot[tsAAPL, Filling → Axis, Joined → True]
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We estimate a GBM process for AAPL stock, as follows:

Clear[μ, σ, x];
GBMproc =

EstimatedProcess[tsAAPL["Values"], GeometricBrownianMotionProcess[μ, σ, x]]

GeometricBrownianMotionProcess[0.0107502, 0.0291338, 94.4766]

Next, we will simulate future paths for AAPL for the next half - year,
based on the estimated GBM process :

paths = RandomFunction[GBMproc,
{tsAAPL["PathLength"], tsAAPL["PathLength"] + 26, 1}, 500];

td = TemporalData[paths["ValueList"], {data[[-1, 1]], Automatic, "Week"},
ValueDimensions → 1]

TemporalData ����� �� ��� ���� �� �� ��� ����
���� ������� ����� ������ ���


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We now calculate simulated stock price paths and chart our projections for the stock over the coming 

half-year.  Notice the Log-Normal shape of the histogram of terminal stock prices.

sd = paths["SliceData", tsAAPL["PathLength"] + 26];
cf = ColorData["Rainbow"];
sliced =

BarChartLast[#], Axes → None, BarOrigin → Left, AspectRatio → 4, ChartStyle →

cf /@ Rescale[MovingAverage[First[#], 2], {Min[sd], Max[sd]}, {0, 1}],

ImageSize → 74 &HistogramListsd,

RangeMin[sd], Max[sd], Max[sd] - Min[sd]  20;

chartpaths = DateListPlottd, ImageSize → 400, PlotRange → All,

AspectRatio → 3  4, Epilog → Inset[sliced, {3713212800, 0}],

PlotStyle → cf /@ Rescale[sd], BaseStyle → Directive[Thin, Opacity[0.5]],

PlotRangePadding → {{0, .25}, {.5, .5}};
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Row[{chartpaths, sliced}]
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We can generalize the basic GBM model in a number of ways.  One of the best-known is the Heston 

(1993) model, which introduces stochastic volatility in the form of a secondary, correlated random 

process.

We define an Ito process corresponding to a correlated 2D Wiener process:

��(ρ_) �= ����������{{�� �}� ��������������[�]}�  �� ��
� �

� ��  � ρ

ρ �
�

We then define the Heston Model using a system of stochastic differential equations driven by the 2D 

Wiener process, the first relating to the stock price, the second to the process volatility, which are 

correlated with parameter ρ.  In the Heston model we assume that volatility reverts to a long term mean 

value θ, with speed of mean-reversion Κ, in a similar way to an Ornstein-Uhlenbeck process, or Cox-
Ingersoll-Ross model.

�� = ����������ⅆ�(�) �(�) �(�) ⅆ��(�) + μ �(�) ⅆ �� ⅆ�(�) κ ⅆ � (θ - �(�)) + ξ �(�) ⅆ�ν(�)�

{�(�)� �(�)}� 
� �
�� ��

� �� {��� �ν} ��(ρ)�

We can then simulate the model using a stochastic Runge-Kutta scheme:

�� = ���������������������[����]�

���������������� /� μ → �� κ → �� θ → �� ξ →
�

�
� ρ → -

�

�
� ��→ ��� ��→ �����

{�� �� �����}� ��� ������→ �����������������������
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Row[{ListLinePlot[td["PathComponent", 1], PlotLabel → "Price of the asset",
ImageSize → 250], ListLinePlot[td["PathComponent", 2],
PlotLabel → "Volatility of the asset", ImageSize → 250]}, Spacer[20]]
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Slava Solganik has contributed some code in the Wolfram Demonstrations Project, which I shall repro-
duce here, that creates an interactive model that the user can to display the volatility surface in the 

Heston model, varying the model parameters dynamically to examine the sensitivity of the surface to 

changes in volatility, mean reversion and volatility of volatility:

Hhat[k_, V_, τ_, θ_, ξ_, ω_, ρ_] :=

Module{f1, f2, d, g, h, ttheta, t, tomega, tc}, c =
1

2
k2 - ⅈ k;

t =
1

2
ξ
2
τ;

tomega =
2

ξ2
ω;

tc =
2

ξ2
c;

ttheta =
2

ξ2
ⅈ k ρ ξ + θ;

d = ttheta2 + 4 tc ;

g =
1

2
ttheta + d;

h =
ttheta + d

ttheta - d
;

f1 = tomega t g - Log
1 - h Exp[d t]

1 - h
 ; f2 = g

1 - Exp[d t]

1 - h Exp[d t]
;

Exp[f1 + f2 V]

kim = 0.6; Λ = 125;
HestonCallLewis[S_, K_, τ_, r_, d_, V0_, MR_, ρ_, Vinf_, VolVol_] :=

Module{Integral, X, θ, ξ, ω, V, k}, X = Log
S

K
 + r - d τ;

k = kre + ⅈ kim;

Integral =
1

π

NIntegrateReExp[-ⅈ k X]
Hhat[k, V0, τ, MR, VolVol, Vinf MR, ρ]

k2 - ⅈ k
, {kre, 0, Λ},
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Method → {"LobattoKronrodRule", "Points" → 25}, PrecisionGoal → 4;

S Exp[-d τ] - K Exp[-r τ] Integral

Moneyness = {.6, .75, .9, 1, 1.1, 1.25, 1.4};
Tenors = {1, 3, 6, 12, 18, 24, 30, 36};
m = Length[Moneyness]; t = Length[Tenors]; size = t m;
S = 100; r = 0.03; d = 0.;

Ncdf = Compile{{x, _Real}}, Erfx  2  + 1  2;

BSCall =

Compile{{S, _Real}, {K, _Real}, {σ, _Real}, {T, _Real}, {r, _Real}, {d, _Real}},

Module{d1, d2}, d1 =

Log S
K
 + r - d T + σ2 T  2

σ T
;

d2 = d1 - σ T ;

S ⅇ
-d T Ncdf[d1] - K ⅇ

-r T Ncdf[d2];

ImpliedVolCall = Compile{{p, _Real}, {S, _Real},

{K, _Real}, {T, _Real}, {r, _Real}, {d, _Real}, {precision, _Real}},

Module{Vol0, Vol1, Vol2, Price0, Price1, Price2}, Vol2 = 0.8;

Vol0 = 0.;
Price0 = S Exp[-d T] - K Exp[-r T];
If[Price0 < 0, Price0 = 0.];

Ifp < Price0, 0.000001, Vol1 = Vol2;

Price2 = BSCall[S, K, Vol1, T, r, d];
While[Price2 < p, Price2 = BSCall[S, K, Vol1, T, r, d];
Vol1 = 2 Vol1;];

Vol2 = Vol1; Price1 = BSCall[S, K, Vol1, T, r, d];

WhileAbs[Price1 - p] > precision, Vol1 = Vol0 + Vol2  2.;

Price1 = BSCall[S, K, Vol1, T, r, d];

If[Price1 < p, Vol0 = Vol1, Vol2 = Vol1];;

Vol1;
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Manipulate

Quiet@Module{i, j, x, k, T, Price, pr, Volatility, vol},

Price = Array[pr, {m, t}];
Volatility = Array[vol, size];

Fori = 1, i < t + 1, i++, T = Tenors[[i]]  12;

Forj = 1, j < m + 1, j++, k = S  Moneyness[[j]];

pr[i, j] = HestonCallLewisS, k,

T, r, d, σ0  100^2, MR, ρ, σinf  100^2, VolVol  100;

x = ImpliedVolCall[pr[i, j], S, k, T, r, d, 0.0001];

Ifx ≠ 0.000001, voli - 1 m + j = {Tenors[[i]], Moneyness[[j]], 100 x},

voli - 1 m + j = {Null, Null, Null};;;

ListPlot3D[Volatility, PlotRange → {Full, Full, Full},
PlotLabel → "Implied Volatility Surface",
AxesLabel → {"time to expiry\nin months", "moneyness", None},

ImageSize → {350, 350}, BoxRatios → {1, 1, .6}, ImagePadding → 25],

Item[
Grid[{

{"original volatility", Manipulator[Dynamic[σ0], {10, 200, 10}, ImageSize → Tiny],
Row[{Dynamic[σ0], "%"}]}, {"long-term volatility", Manipulator[
Dynamic[σinf], {10, 200, 10}, ImageSize → Tiny], Row[{Dynamic[σinf], "%"}]},

{"correlation", Manipulator[Dynamic[ρ], {-.9, .9, .1}, ImageSize → Tiny],
Row[{Dynamic[ρ]}]},

{"mean reversion", Manipulator[Dynamic[MR], {.1, 10, 0.1},
ImageSize → Tiny], Dynamic[MR]},

{"volatility of volatility", Manipulator[Dynamic[VolVol],
{10, 1000, 10}, ImageSize → Tiny], Row[{Dynamic[VolVol], "%"}]}},

Alignment → {{Right, Left, Right}}, ItemSize → {{12, 8, 4}, Automatic}]],
{{σ0, 40}, 10, 200, 10, ControlType → None},
{{σinf, 20}, 10, 200, 10, ControlType → None},
{{ρ, -.1}, -.9, .9, .1, ControlType → None},
{{MR, 1.5}, .1, 10, .1, ControlType → None},
{{VolVol, 80}, 10, 1000, 10, ControlType → None}, SynchronousUpdating → False,

SaveDefinitions → True, ControlPlacement → Left, TrackedSymbols → Manipulate
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An Ornstein-Uhlenbeck process, also known as a Vasicek process, is widely used in the modeling of 
interest rate processes and related derivative assets.  It is a continuous state, continuous-time process 
in which the state X(t) follows an Ito stochastic differential equation of the form:

 where ω(t) follows a standard Wiener process.

The process with parameters [μ, σ, θ, x0 ] is mean reverting, to long-term mean value μ (in the above 

formulation,) with rate of mean-reversion θ, volatility σ and starting value x0.

Here are a few sample paths from an O-U process with mean zero, with various randomized starting 

points:

points = {-2, -1, 0, 1};
sample[x_] := RandomFunction[OrnsteinUhlenbeckProcess[0, .5, .3, x], {0, 10, 0.1}];
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ListLinePlotsample[#] & /@ points, PlotRange → All, Filling → Axis,

PlotLegends → StringJoin["x = ", ToString[#]] & /@ points
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If we take a slice of the process at time t, we find that the process is stationary with a normal distribution 

that is independent of time:

StationaryDistribution[OrnsteinUhlenbeckProcess[μ, σ, θ]]

NormalDistributionμ,
σ

2 θ



PlotPDFOrnsteinUhlenbeckProcess0, 1, 1  3[t], x, {x, -3, 3}, Filling → Axis
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Plot

Evaluate@TablePDF[OrnsteinUhlenbeckProcess[0, 1, .5, 2][t], x], t, 1  2, 1, 2,

{x, -3, 3}, Filling → Axis, PlotLegends → {"t = 1/2", "t = 1", "t = 2"}
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The normality of the time-sliced distribution can be illustrated using simulated process paths:

data = RandomFunctionOrnsteinUhlenbeckProcess0, 1, 1  3, 2, {0, 1, .01}, 1000;

sd = data["SliceData", 1];
cf = ColorData["Rainbow"];
sliced =

BarChartLast[#], Axes → False, BarOrigin → Left, AspectRatio → 4, ChartStyle →

cf /@ Rescale[MovingAverage[First[#], 2], {Min[sd], Max[sd]}, {0, 1}],

ImageSize → 128 &[HistogramList[sd, {Range[-4, 8, .3]}]];

ListLinePlotdata, ImageSize → 600, PlotRange → All, AspectRatio → 2  3,

Epilog → Inset[sliced, {1.01, 0}, {0, 12}], PlotStyle → cf /@ Rescale[sd],

BaseStyle → Directive[Thin, Opacity[0.5]], PlotRangePadding → {{0, .25}, {.5, .5}}
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For an O-U process with zero as the fixed initial condition, both the mean and variance are constant:

Mean[OrnsteinUhlenbeckProcess[μ, σ, θ][t]]

μ

Variance[OrnsteinUhlenbeckProcess[μ, σ, θ][t]]

σ2

2 θ

But for an O-U process with fixed initial state x, the mean and variance are time-dependent:

Mean[OrnsteinUhlenbeckProcess[μ, σ, θ, x][t]]

ⅇ-t θ (x - μ) + μ

Variance[OrnsteinUhlenbeckProcess[μ, σ, θ, x][t]]

1 - ⅇ-2 t θ σ2

2 θ

The skewness and kurtosis are constant, however, regardless of the starting point of the process:

Skewness[OrnsteinUhlenbeckProcess[μ, σ, θ][t]]

0
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Skewness[OrnsteinUhlenbeckProcess[μ, σ, θ, Subscript[x, 0]][t]]

0

Kurtosis[OrnsteinUhlenbeckProcess[μ, σ, θ][t]]

3

Kurtosis[OrnsteinUhlenbeckProcess[μ, σ, θ, Subscript[x, 0]][t]]

3

������������������������������������������������

The inherent tendency of an O-U process to long term mean reversion explains its popularity in model-
ing interest rate and volatility processes.  The following example demonstrates the tendency of the 

process towards the long-term mean (of 1.2, in this example), with speed governed by the parameter θ 

=1:

μ = 1.2; σ = 0.3; θ = 1; T = 5;

noisysol = RandomFunction[OrnsteinUhlenbeckProcess[μ, σ, θ, 2], {0, T, 0.01}, 10^2];
meanFunction = TimeSeriesThread[Mean, noisysol];

Show[ListLinePlot[noisysol, PlotStyle → Directive[Opacity[.1]]],
ListLinePlot[meanFunction, PlotStyle → Directive[Black, Thick]]]
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The fractal Brownian motion process is another continuous-time, continuous state model that general-
izes the standard GBM process by introducing a parameter h, known as the Hurst exponent, that deter-
mines how the volatility of the process scales with time.  It is a Gaussian process with mean μt and 

covariance .  For  h = 

1
2
 it reduces to a standard Wiener process.

The time-slice properties of the process show how the Hurst exponent comes into play:
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Clear[μ, σ, θ, T];
PDF[FractionalBrownianMotionProcess[μ, σ, h][t], x]

ⅇ
-
t-2 h (x-t μ)2

2 σ2 t-h

2 π σ

The effect of the Hurst exponent parameter is perhaps best understood by means of an illustrative 

example.  Below we have charted the evolution of three otherwise identical processes that differ only in 

the value of the Hurst parameter, which ranges from 0.1 to 0.5 to 0.9.

sample[h_] := SeedRandom[3];

RandomFunction[FractionalBrownianMotionProcess[h], {0, 1, 0.01}]

GraphicsRow[ListLinePlot[#, Filling → Axis] & /@

{sample[.1], sample[.5], sample[.9]}, ImageSize → Large]

0.2 0.4 0.6 0.8 1.0-0.5

0.5
1.0
1.5
2.0
2.5
3.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

The middle process, with h=0.5,  illustrates a benchmark GBM process.  The first chart shows an anti-
persistent process,with h=0.1,  in which volatility scales at much less than the square root of time, while 

the third chart shows a persistent process with h=0.9 that has a tendency to exhibit trending behavior, a 

feature of processes known as “long memory” processes.  A long memory process in one in which 

serial autocorrelations die away very slowly, leading to a tendency for long term trends to develop.  It 
has been quite widely adopted for modeling volatility processes, and with some success.

For those interested in learning more about long memory processes, see my post on Long memory and 

Regime Shifts in Asset Volatility (http://jonathankinlay.com/2011/03/long-memory-and-regime-shifts-in-
asset-volatility/).

����������������������������
The standard GBM process assumes that the price process follows a LogNormal distribution, or equiva-
lently, that returns are normally distributed.  However, it is widely recognized that empirical distributions 
exhibit heavier tails than seen in a Gaussian framework.  In other words, empirical processes are 

characterized by a higher frequency of very large moves in either direction than would be expected if 
returns were normally distributed.

We have already described two approaches to generalizing the standard GBM model that go some way 
to addressing its shortcomings.  The first, the Heston model, incorporates a correlated, stochastic 
volatility process that will produce greater weight in the tails of the returns distribution and, as a conse-
quence, volatility smiles in the option implied volatility curves.

A second approach, the fraction Brownian motion process, can also produce a fat-tailed distribution in
the returns process, but is used primarily to model the phenomenon known as “long memory”. 
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We turn next to another very popular approach to modeling the empirical phenomenon of heavy tails, in 

which the process is assumed to be subject to random “jumps”.  Jumps are generally modelled with a 

Poisson process with rate λ which defines the jump frequency.  The higher the value of λ, the more 

likely a jump is to occur.  Jumps occur independently of one another and when a jump does occur, the 

underlying process increases by the jump size.

The issue with using a simple Poisson model is that it assumes that all jumps are of uniform size, which 

is manifestly not the way that asset process behave empirically.  So, in addition to modeling the jump 

arrival process, we also need to a means of modeling the magnitude of jumps. 

�����������������������������

In Merton’s jump diffusion model, the stock price  follows the random process  
, which comprises, in order, drift, diffusive, and jump components. The 

jumps occur according to a Poisson distribution and their size follows a log-normal distribution, or, 
equivalently, the size of jumps in the returns process follows a normal distribution, allowing for both 

positive and negative jumps in asset returns. The model is characterized by the diffusive volatility σ, the 

average jump size J  (expressed as a fraction of St), the frequency of jumps λ, and the volatility of jump 

size ν.

Let’s apply this concept to create a jump diffusion version of the GBM process we originally estimated 

for AAPL stock:

Clear[t, x, y]
estJGBMproc = TransformedProcess[x[t] + y[t],

{x  GBMproc, y  CompoundPoissonProcess[0.1, LogNormalDistribution[1, 0.5]]}, t];

simJGBMproc = RandomFunction[estJGBMproc,
{tsAAPL["PathLength"], tsAAPL["PathLength"] + 26, 1}, 500];

tJd = TemporalData[simJGBMproc["ValueList"],
{data[[-1, 1]], Automatic, "Week"}, ValueDimensions → 1];
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DateListPlottJd, ImageSize → 400, PlotRange → All, AspectRatio → 3  4,

Epilog → Inset[sliced, {3713212800, 0}], PlotStyle → cf /@ Rescale[sd],

BaseStyle → Directive[Thin, Opacity[0.5]], PlotRangePadding → {{0, .25}, {.5, .5}}
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The chart of the simulated paths for the jump diffusion process may not look too dissimilar from the 

original GBM process, but the differences become more apparent when we compare the evolution of 
the means of the two processes:

meantd = TimeSeriesThread[Mean, td];
meantJd = TimeSeriesThread[Mean, tJd];

DateListPlot[{meantd, meantJd}, PlotLegends → {"GBM", "Jump Diffusion"},
PlotLabel → "AAPL Stock Model Forecast"]

AAPL Stock Model Forecast

GBM

Jump Diffusion
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One of the principal effects of introducing stochastic jumps into the standard GBM framework is to 

produce distributions with heavier tails than predicated in a Gaussian framework.  This in turn results in 

implied volatility smiles of varying shapes, depending on the values chosen for the model parameters. 
For example, if we consider 6-month options with an average jump frequency of one jump a year of 
average relative jump size 0.9 and volatility of volatility of 25%, we find a characteristic smile shape for 
the implied volatility curve, as follows:

Some of the effects of varying the model parameters are intuitively obvious.  For instance, if we 

increase the average jump frequency to 4 times a year, while keeping all the other model parameters 
unchanged, we find that the entire implied volatility curve is shifted upwards, with greater curvature in 

the leftmost por-
tion:
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Increasing the jump volatility likewise shifts the entire implied volatility curve upwards, but now accentu-
ates the curvature in both halves:

On the other hand, an increase in the average relative jump size changes the shape of the entire 

implied volatility curve:
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 A Mathematica demonstration project developed by Peter Falloon, reproduced below, allows the user 
to explore how varying the parameters of the Merton jump diffusion model affects option implied volatil-
ity and the shape of the implied volatility curve.

Manipulate

Module{type = "call", S = $spot, q = 0, r = 0.01 rate,

σ = 0.01 vol, ν = 0.01 nu, xMin = 0.5 $spot, xMax = 2. $spot}, Quiet@

ListLinePlotTablek  S, 100. impliedVolJD[type, S, k, r, q, σ, T, λ, m, ν], k,

xMin, xMax, ControlActive[0.25, 0.05] xMax - xMin, Evaluate[plotOpts],

Style["general parameters", Bold],
{{T, 0.5, "time to expiry (years)"},
0.25, 4, 0.25, Appearance → "Labeled", ImageSize → Tiny},

{{rate, 5., "interest rate (% per year)"}, 0., 25.,
0.25, Appearance → "Labeled", ImageSize → Tiny},

Delimiter,
Style["jump diffusion parameters", Bold],
{{vol, 25.,

Row[{"diffusive volatility\n(% per ", Superscript["year", "1/2"], ")"}]},
1., 100., 1., Appearance → "Labeled", ImageSize → Tiny},

{{λ, 1, "average jump \nfrequency (per year)"}, 0, 10,
1, Appearance → "Labeled", ImageSize → Tiny},

{{m, 0.9, "average jump\nsize (multiplier)"}, .5, 2.,
0.05, Appearance → "Labeled", ImageSize → Tiny},

{{nu, 25., "jump volatility (%)"}, 0., 100., 1.,
Appearance → "Labeled", ImageSize → Tiny},

ControlPlacement → Left, AutorunSequencing → {1, 3, 4, 5, 6}, SaveDefinitions → True
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The basic Geometric Brownian Motion model has served the quantitative research and financial engi-
neering community well over the last several decades, providing a coherent framework for modeling 

many different types of asset processes and leading to tractable models for the pricing of assets and 

their derivatives.

Over time, however, shortcomings in the model have become more apparent as discrepancies have 

been revealed between the empirical characteristics of asset processes compared to those assumed 

within a theoretical, Gaussian setting.

Thanks to advances in the theory of asset process models over the last few decades, however, we are 

no longer constrained by the unrealistic assumptions of purely Gaussian techniques.  We can, instead, 
incorporate a variety of different types of nonlinear behavior into our models, leading to more plausible 

explanations of some of the important characteristics we see in the empirical data and providing the 

means to price assets and their derivatives more consistently.
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