
Link Between Autoregressive and Ornstein-Uhlenbeck 

Processes
Autoregressive time series models and continuous time series models such as the ubiquitous 

Ornstein-Uhlenbeck (OU) process generally arise in different contexts. While the AR process is a 

staple of traditional time series modeling, the OU process is a widely used stochastic process in 

various fields, including finance, physics, and biology.
Often the connection between the two processes goes unremarked upon. In fact, the discrete-time 

AR model converges to the continuous-time OU process under certain conditions. 

The discrete - time AR model can be written as :

Xt+1 = ϕXt + ϵt

where Xt is the time series at time t, ϕ is the autoregressive parameter and ϵt is the white noise 

error term with mean zero and variance σ2.

The continuous - time OU process is defined as :

dXt = θ (μ -Xt) dt+ σdWt

where Xt is the process at time t, θ is the rate of mean reversion, μ is the long term mean, σ is the 

volatility, t is an infinitesimally small time interval and Wt s a Wiener process (Brownian motion), 
representing the stochastic component of the process.

To demonstrate the correspondence between the two models, we need to show that under certain 

conditions, the AR model converges to the OU process as the time interval approaches zero.

To derive the connection, we start by taking the limit as the time interval Δt approaches zero, 
making the AR model a continuous - time process. The noise term ϵt will converge to Wt , the 

Wiener process, under specific conditions.

The convergence is ensured if the following conditions hold :

◼  The AR parameter ϕ should be negative and the absolute value of ϕ should be less than 1 to 

ensure stability.

◼ The variance of the noise term ϵt  should be related to
σ and Δt. 

◼ The mean of ϵt  should be zero, which is typical in many AR models .

By taking the limit as Δt approaches zero, the discrete - time AR model converges to the continuous 

- time OU process :

limΔt0
Xt+1 - Xt

Δt
= θ (μ - Xt) + σ

dWt

dt

We then equate the terms from the AR model and the OU process to establish the connection 

between ϕ and θ, and relate the variance of  ϵt to σ and Δt.

Step 1 : Rewrite the discrete ARmodel usingΔXt :

ΔXt = Xt+1-Xt = -Xt + ϵt + ϕXt = (ϕ - 1) Xt + ϵt

Step 2 : Divide by Δt :



ΔXt

Δt
=

(ϕ - 1) Xt + ϵt

Δt

Step 3 : Take the limit as Δt approaches zero:

limΔt0
ΔXt

Δt
= limΔt0

(ϕ - 1) Xt

Δt
+ limΔt0

ϵt

Δt

Step 4 : Recognize that limΔt0
ϵt

Δt
 is equivalent to σWt in the continuous - time OU process .

Step 5 : Take the first limit:

limΔt0
(ϕ - 1) Xt

Δt
= (ϕ - 1) limΔt0

Xt

Δt

Step 6 : Recognize that limΔt0
ΔXt
Δt

 is equivalent to 
 Xt
 t
in the continuous-time OU process.

Step 7: Rewrite the limit:

limΔt0

ΔXt

Δt
= (ϕ - 1)

 Xt

 t
+ σ

dWt

dt

Step 8 : Equate the continuous - time OU process and the AR model:

 Xt

 t
=

θ (μ -Xt)

(ϕ - 1)

This shows that as Δt approaches zero, the discrete AR model converges to the continuous - time 

OU process. The correspondence between the two is established, and we find that ϕ and θ are 

related by:

θ =
σ2

ϕ - 1

Another,  simpler approach is to discretize the OU process:

XΔt+t -Xt = Δt θ (μ -Xt) + σ Δt ϵt

By comparing the two, we can relate the parameters :

ϕ    =   1 - θ t
μ     =   0 (for simplicity)

σAR =  σ Δt

Illustration
Let' s simulate paths for both processes using the following parameters :
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I n [ ] : = (*Define parameters*)
phi = 0.95;
sigmaAR = 0.05;
dt = 0.01;
theta = (1 - phi) / dt;
sigmaOU = sigmaAR / Sqrt[dt];
mu = 0;
T = 100;
steps = Round[T / dt];

(*Simulate AR(1) Process*)
arPath =

NestList[phi # + sigmaAR RandomReal[NormalDistribution[0, 1]] &, 0, steps];

(*Discretize and Simulate OU Process*)
ouPath = NestList[# + theta (mu - #) dt +

sigmaOU Sqrt[dt] RandomReal[NormalDistribution[0, 1]] &, 0, steps];

(*Plot the paths*)
ListLinePlot[{arPath, ouPath},
PlotLegends  {"AR(1)", "OU"}, AxesLabel  {"Time", "Value"}]
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Cumulative Paths
The equivalence between the discrete AR (1) process and the continuous Ornstein - Uhlenbeck (OU) 
process is more of a theoretical one, particularly when considering infinitesimally small time steps 

in the OU process. However, when we discretize the OU process, as we' ve done, the two processes 

can be made to resemble each other over short intervals . Given the parameters we' re using:

ϕ = 0.95

σAR = 0.05

Δt = 0.01

θ =
1 - ϕ

Δt

σOU =
σAR

Δt

Here' s what' s happening :

◼ The AR (1) process is defined by its autoregressive parameter ϕ and the standard deviation of the 

noise σAR. 

◼ The discretized OU process' s parameters are derived to match the AR (1) process over a one - step 

interval . Specifically, θ is chosen to give a similar autoregressive behavior to ϕ, and σOU is adjusted 

to match the noise level. 

Over short intervals (one - step changes), the two processes should be fairly similar. However, over 
longer intervals, the cumulative effects of their different dynamics will become evident, especially 

since the AR (1) lacks the mean - reverting property of the OU process. 

For the parameters we’ ve chosen : 

◼ The AR (1) process has a strong persistence due to the high ϕ value, meaning it will remember its 

previous values well.

◼ The OU process will have strong mean - reversion due to the high θ value derived from ϕ and Δt. 

The individual paths of the processes will have similar fluctuations around their current values. 
However, the cumulative paths will differ because of the reasons mentioned above. The AR (1) 
process will tend to drift, while the OU process will revert to its mean (which is 0 in this case). To get 
a closer match in the cumulative paths over a longer duration, you would have to adjust the parame-
ters, especially the mean of the OU process μ and its mean - reversion strength θ.
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I n [ ] : = ListLinePlot[{Accumulate@arPath, Accumulate@ouPath},
PlotLegends  {"AR(1)", "OU"}, AxesLabel  {"Time", "Value"}]
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