
5. Pairs Trading
Pairs trading is a market neutral trading strategy that involves buying and selling two highly
correlated financial instruments simultaneously. The idea is to profit from the difference in price
movements between the two instruments. Pairs trading is often used in the stock market, but can also
be applied to other markets such as futures and options. The strategy is based on the idea that while
individual stocks may be affected by company - specific or market - wide events, the relative
relationship between two highly correlated stocks will remain relatively stable over time.

Pairs trading involves applying statistical and mathematical techniques to identify and analyze the
correlation and co - movement between two financial instruments . Some of the terminology that
commonly arises in this context includes:

◼ Statistical Arbitrage : This technique involves analyzing the statistical properties of the price
movements of the two or more related instruments in order to identify any mispricing or deviation
from the normal relationship between them.

◼ Correlation Analysis : This technique involves calculating the correlation coefficient between the
two instruments in order to determine the strength and direction of the relationship between them.

◼ Cointegration Analysis : This technique involves analyzing the long - term relationship between the
two instruments to determine if they are cointegrated, meaning that they move together over time.

◼ Spread Trading : This technique involves calculating the ratio or difference between the prices of
the two instruments and then trading based on the movements of this spread.

◼ Risk Management : Pairs traders use various risk management techniques to minimize their losses .
They typically use stop - loss orders and other techniques to limit their downside risk.

◼ Backtesting : Pairs traders use historical data to test the performance of their trading strategy,tune
the strategy parameters and make adjustments to the strategy if necessary.

Pairs Trading Coke vs. Pepsi with the Kalman
Filter

To illustrate the application of the various techniques used in developing a pairs strategy we will

choose the stock pair { PEP , KO }, i.e. Pepsi and Coke.

Stock Selection & Parameter Settings
In[]:= timeStep = {1, "BusinessDay"};

startDate = DateObject[{2018, 1, 2}, "Day"];

endDate = DateObject[{2022, 12, 31}, "Day"];

initDate = NextDate[DatePlus[startDate, {-6, "Month"}], "BusinessDay"];

symbols = {"PEP", "KO"};

stocks = Entity["Equities", #] & /@ symbols;

maxTrades = 1;

portfolioUnits = 1000;

slippage = AssociationThread[symbols  (Quantity[#, "US Dollars"] & /@ {0.01, 0.01})];

commission = Quantity[0.005, "US Dollars"];

Price and Return Data
We first extract the price and returns series for the two stocks from the Entity Store, over the period
specified in the strategy parameters above, as follows:

In[]:= tsPriceSeries = 

Association[GetSymbol[#]  TimeSeriesWindow[#["Historical Data"]["Price Data",

"Daily Prices"], {initDate, endDate}] & /@ stocks]

Out[]=

PEP  TimeSeries
Time: 03 Jul 2017 to 30 Dec 2022
Data points: 1385

,

KO  TimeSeries
Time: 03 Jul 2017 to 30 Dec 2022
Data points: 1385



We will use log-returns rather than the daily returns since, as we have seen, the log transform tends to
produce a more stationary time series:

In[]:= tsReturnsSeries = Differences[Log[#["PathComponent", "Close"]]] & /@ tsPriceSeries

Out[]=

PEP  TimeSeries
Time: 04 Jul 2017 to 30 Dec 2022
Data points: 1385

,

KO  TimeSeries
Time: 04 Jul 2017 to 30 Dec 2022
Data points: 1385



Modeling the Price Co-Movements
The Pepsi and Coke price series are clearly highly correlated:

2 Pairs Trading.nb

In[]:= DateListPlot[#["PathComponent", "Close"] & /@ Values[tsPriceSeries], PlotLabels  symbols]

Out[]=

PEP

KO

2018 2020 2022
0

50

100

150

200

In[]:= Correlation[Transpose@

Join[#["PathComponent", "Close"]["Values"] & /@ Values[tsPriceSeries]]] // MatrixForm

Out[]//MatrixForm=

1. 0.960282

0.960282 1.

Correlation & Cointegration of the Returns Series
In the ensuing analysis we will focus on the returns series for both stocks. This has the advantage of
ensuring stationarity in the series used for analysis. Again, we see a very high level of correlation
between the two stock return processes:

In[]:= ListPlot[Transpose@Join[#["Values"] & /@ Values[tsReturnsSeries]]]

Out[]=

-0.02 -0.01 0.01 0.02 0.03

-0.02

-0.01

0.01

0.02

0.03

In[]:= Correlation[Transpose@Join[#["Values"] & /@ Values[tsReturnsSeries]]] // MatrixForm

Out[]//MatrixForm=

1. 0.748218

0.748218 1.

Pairs Trading.nb 3

Johansen Test for Cointegration
Cointegration is a statistical property of a collection of time series, which suggests that they are
related in such a way that a linear combination of them is stationary. Cointegration is often used in
econometrics and finance to model stable, long - term relationships between variables.
 A spurious correlation is a statistical relationship between two variables that appear to be related but
are not actually causally related. This type of correlation can occur due to chance or due to a third
variable that is not being considered.
 Co-integration is regarded as a more reliable gauge of the relationship between series than
correlation, as it seeks to account for the presence of such common factors.

Examples of cointegrated series in finance include :

◼ The relationship between stock prices and dividends

◼ The relationship between interest rates and bond prices

◼ The relationship between exchange rates of two currencies

Examples of cointegrated series in economics include :

◼ The relationship between GDP and unemployment

◼ The relationship between inflation and money supply

◼ The relationship between housing prices and rental rates .

The typical workflow in pairs trading is to test for cointegration between the pair of correlated pro-
cesses using a procedure developed by Engle and Granger, or a more comprehensive test developed by
Soren Johansen.

The Johansen test evaluates whether there are at least r cointegrating relationships between between
k different time series and is more general than the Engle-Granger procedure. The test comes in two
forms, the first using the trace statistic, the second the eigenvalue. The null hypothesis is that the
number of cointegration vectors is r = r* < k, vs. the alternative that r = k. Testing proceeds sequentially
for r* = 1, 2, etc. and the first non-rejection of the null is taken as an estimate of r.

Here we would reject the null hypothesis in the case of r <=1, concluding (with 99% confidence) that
there is at least one cointegrating relationship between the two stock returns processes.

In[]:= PrintStats[JohansenTest[Join[#["Values"] & /@ Values[tsReturnsSeries]], 2, 0]]

NULL Trace Statistic Crit 90% Crit 95% Crit 99%

r<=0

r<=1

1122.65

515.781

10.4741 12.3212 16.364

2.9762 4.1296 6.9406

NULL Eigen Statistic Crit 90% Crit 95% Crit 99%

r<=0

r<=1

606.873

515.781

9.4748 11.2246 15.0923

2.9762 4.1296 6.9406

4 Pairs Trading.nb

Kalman Filter Spread Model
The Kalman filter is a mathematical algorithm that uses a series of measurements and predictions to
estimate the state of a system over time. It is commonly used in control systems, navigation systems,
and signal processing. In the context of pairs trading, the Kalman filter can be used to estimate the
spread between the prices of two correlated financial assets, such as stocks.

 If xt and yt are non-stationary returns processes with order of integration d=1, then a linear combina-
tion of them must be stationary for some value of β andμt. In other words, the spread:

yt - βxt = μt

is a stationary process.

If we knew β , we could just test the spread for stationarity with something like a Dickey–Fuller test.
But because β is unknown we have to estimate it using linear regression, or some other technique.

In this example we model the relationship between the two stocks using a Kalman filter, which dynami-
cally estimates the regression coefficient βt, which represents the “state” of the linear relationship
between the two returns processes as it changes over time. So in this case the model is:

yt - βt xt = μt

where the regression coefficient βt is updated at each timestep.

The Equities Entity Store has a suite of functions to model pairs relationships using a variety of statisti-
cal techniques, including the Kalman filter.

The Importance of Stationarity in Finance

It is common practise these days to stress the limitations of the assumption of Normality as applied to
asset returns processes in standard economic models. The phenomenon of “fat tails” - the tendency to
observe extremely large, positive or negative values much more frequently in an empirical dataset than
would be expected if the data were Normally distributed - has been thoroughly documented. The
assumption of Normality is important, as it simplifies the procedure for statistical inference. Con-
versely, if the process we are studying is non-Gaussian it may invalidate certain statistical tests and, in
extreme cases, our entire model. Usually, however, we are able to overlook or work around the non-
Gaussian behavior of the process without incurring too great a penalty; in other cases we might trans-
form the data to produce something closer to a Gaussian-distributed dataset, or employ a “fudge
factor” to make adjustments to our model, as is the case with the volatility skew in the Black-Scholes
option pricing framework.

Stationarity is another important feature of random processes that greatly simplifies econometric

Pairs Trading.nb 5

modelling. Econometricians will seek to achieve stationarity in a time series before going on to model
it, perhaps by differencing, or applying logs or other data transforms. This makes the series much more
tractable for modeling purposes; but stationarity also has real, economic significance too.

To understand why, lets consider a stationary ARMA process:

In[]:= stationaryproc = ARMAProcess[0, {.1}, {0.3}, 1];

WeakStationarity[stationaryproc]

Out[]=

True

Now let' s generate a time series of observations from the process and plot them.

In[]:= stationarydata = RandomFunction[stationaryproc, {0, 10^3}]

Out[]=

TemporalData
Time: 0 to 1000
Data points: 1001 Paths: 1



In[]:= ListPlot[stationarydata, Filling  Axis]

Out[]=

200 400 600 800 1000

-3

-2

-1

1

2

3

Suppose that this data represents the spread between two stocks. Let’s look at how the spread evolves
through time:

6 Pairs Trading.nb

In[]:= ListLinePlot[Accumulate[stationarydata], PlotLabel  "Stationary Spread"]

Out[]=

200 400 600 800 1000

-30

-20

-10

10

Stationary Spread

As you can see, although the spread periodically moves quite far away from its mean (close to zero in
this case), it always eventually reverts to that level. How far away it is likely to move, and how quickly it
reverts to its mean, are dependant on the characteristics of the underlying process. But the point is: if
the spread is a stationary process then it will revert to its mean eventually, because both the mean and
variance of the process are constant. So if we buy the spread when it is low (or negative) and sell it
when it is high, we are likely to make money, over the long term.

Now lets look at some sample data from a non-stationary process:

In[]:= nonstationaryproc = ARMAProcess[0, {1}, {1}, 1, {}];

WeakStationarity[nonstationaryproc]

Out[]=

False

In[]:= nonstationarydata = RandomFunction[nonstationaryproc, {0, 10^3}];

ListPlot[data, Filling  Axis]

Out[]=

200 400 600 800 1000

-20

20

40

60

80

Again, assuming the data represents the spread between two stocks, you can see that, because the
underlying process is non-stationary, the spread can wander arbitrarily far away from its mean. If we

Pairs Trading.nb 7

try to sell such a spread when it is high, or buy when it is low, we could easily suffer catastrophic losses
as the spread continues to widen, or narrow.

In[]:= ListLinePlot[Accumulate[nonstationarydata], PlotLabel  "Non-Stationary Spread"]

Out[]=

200 400 600 800 1000

10000

20000

30000

40000
Non-Stationary Spread

So the issue of stationarity is of vital significance in the context of pairs trading, which works on the
assumption that the spread is stationary and therefore mean-reverting.

Unit Roots

A unit root is a statistical concept used in time series analysis to describe a non - stationary time series
that can be made stationary through the use of a first - differencing transformation . A time series with
a unit root is said to be integrated of order 1, or I (1) for short. The most common unit root test is the
Augmented Dickey - Fuller test, which is used to determine whether a time series has a unit root.

In reality, we have no way of knowing the precise form of the process underlying a time series like a
spread - all we have is a sample of data. So how do we determine whether the process is stationary, or
not? Fortunately there are a series of tests that can be applied to determine the answer. The Unit-
RootTest function applies the Dickey-Fuller and Phillips-Perron F and T tests to determine the likeli-
hood that the process contains a unit root and is therefore non-stationary (the null hypothesis). More
specifically, we test for a unit root in a model of the form:

yt - a1 yt-1, . . ., ar yt-r = α + βt + et

where α is the constant offset, β is a linear drift, and r is the order of the autoregressive model.

In cases where, for example, the data represents a time series of stock returns, or a spread, we would
normally assume the constant and trend terms are zero and that r = 1. So the model then becomes:

yt - a1 yt-1 = et

Returning to our illustration, for the stationary data series all four variants of the unit root test convinc-
ingly reject the null hypothesis of a unit root, leading us to conclude that the underlying process is
stationary, as indeed we know it to be:

8 Pairs Trading.nb

In[]:= UnitRootTest[stationarydata, Automatic, All]

Out[]=

1.47437 × 10-15, 6.29982 × 10-17, 2.21865 × 10-15, 7.76521 × 10-17

On the other hand, for the non-stationary data, none of the test variants rejects the null hypothesis,
leading to the correct conclusion that the underlying process is non-stationary.

In[]:= UnitRootTest[nonstationarydata, Automatic, All]

Out[]=

{0.831409, 0.874535, 0.772405, 0.778501}

Unfortunately, however, life is the real world is rarely as simple as this. Unit Root tests have quite low
power and are often unable to distinguish correctly between a process that is non-stationary, but close
to being stationary vs. one that is stationary, but close to being non-stationary. In simple terms, when
we are looking at the data from a pairs spread, it is often very difficult to determine for sure whether
the underlying process is truly stationary and that the spread will consequently revert to the mean, or
non-stationary, and is therefore unsuitable for trading. Indeed, we often find cases where statistical
tests indicate that the process is stationary, but the rate of mean reversion is so slow that a pairs
strategy is likely to go through prolonged and very uncomfortable drawdowns before turning prof-
itable.

For these reasons a pairs trading strategy will typically incorporate a stop loss that will exit the trade if
the spread continues to move in the wrong direction: the trader just can’t afford to take the risk that,
despite indications to the contrary, the spread is non-stationary and/or has broken down - meaning
that its characteristics have changed in some fundamental way, rendering historical analysis moot.

A further safety measure that many pairs trading strategists adopt is to screen potential pairs trades,
selecting only those for which there is some basis in economic reality to suggest that their relationship
is likely to be an enduring one. So, for example, the analyst might reject pairs of stocks that belong to
different sectors or industries, regardless of how correlated or cointegrated the series might appear. A
pair like Coke-Pepsi is likely to pass such a filter due to the fundamental similarities in the two compa-
nies and their products; a pair involving a stock like TSLA, on the other hand, would perhaps be
unlikely to be chosen because the firm is a recent entrant into the automotive industry and its innova-
tive products are very different to those of incumbents, who continue to rely on legacy products for the
majority of their revenues.

More broadly, we might regard the “gold standard” for candidates for pairs trading to be, say, a cash-
futures pair, such as Treasury Bonds vs. Bond futures. Here, not only are the series both highly corre-
lated and cointegrated, there is an economic principle (the law of one price) that connects the two
markets and ensures that the price of related instruments cannot diverge by too much for too long. So
in this case the fundamental and statistical rationale for the trade overlap, giving us considerable
confidence in it. Of course, the problem is that everyone understand this, so price discrepancies are
very quickly arbitraged away. What the strategist seeks, therefore, is a pairs trade with both a cogent
economic rationale as well as a compelling statistical relationship, that is not too widely known or

Pairs Trading.nb 9

understood. One of the benefits of developing pairs trading strategies in equities is that there is a very
large universe of potential pairs to choose from: in the Equities Entity Store alone there are approxi-
mately as many as 7500^2 ≈ 56 million possibilities to consider.

We will return to the important topic of pairs selection in a later chapter.

Notes

◼ More on stationarity and unit root tests : Cointegration Breakdown

Implementing the Kalman Filter Model
Returning to our Pepsi-Coke trade, we use the ReturnsTimeSeriesKalman function to create a Kalman
filter model producing time-varying estimates of the beta coefficient of the linear relationship between
the two stock returns series:

In[]:= {tsBeta, tsZscores, tsQ} = ReturnsTimeSeriesKalman[tsReturnsSeries]

Out[]=

TimeSeries
Time: 05 Jul 2017 to 30 Dec 2022
Data points: 1384

,

TimeSeries
Time: 05 Jul 2017 to 30 Dec 2022
Data points: 1384

, TimeSeries
Time: 05 Jul 2017 to 30 Dec 2022
Data points: 1384



The tsBeta variable contains the beta time series while the Zscores variable contains the time series of
residuals from the Kalman model, standardized using the square root of the estimated time-varying
process varianceQt that is contained in the variable tsQ.

In[]:= ListLinePlot[{tsZscores, tsBeta["PathComponent", "Beta"]},

MultiaxisArrangement  All, PlotLabels  {"\nZ-Score", "Beta"}]

Out[]=

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Z
-
S
co
re

0.0

0.2

0.4

0.6

0.8

B
et
a

2018 2020 2022

Before proceeding, we first want to test the time series of Zscores for stationarity, as it is these scores
that we are going to use to generate signals to trade the spread, on the assumption that it is mean-
reverting. All four variants of the UnitRootTest roundly reject the null hypothesis of a unit root, leading
us to conclude that the spread is indeed stationary and therefore tradeable:

10 Pairs Trading.nb

https://jonathankinlay.com/2018/10/cointegration-breakdown/

In[]:= UnitRootTest[tsZscores["Values"], Automatic, All]

Out[]=

4.04276 × 10-19, 1.6038 × 10-22, 1.83288 × 10-18, 2.48446 × 10-23

Trading Signals
In order to proceed with the implementation and backtesting of our strategy, we first need to process
the Zscores and convert them into trading signals. Before doing that, let’s look at the distribution of
the Zscores:

In[]:= Histogram[tsZscores]

AssociationThread[

{"Mean", "Standard Deviation"}  Through[{Mean, StandardDeviation}[tsZscores]]]

Out[]=

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

50

100

150

Out[]=

Mean  -0.000779821, Standard Deviation  0.253296

Applying a battery of standard tests for Normality, we find that the distribution of the ZScores clearly
isn’t Gaussian:

In[]:= ℋ = DistributionFitTest[tsZscores, Automatic, "HypothesisTestData"];

ℋ["TestDataTable", All]

Out[]=

Statistic P-Value
Anderson-Darling 34.9435 0.

Baringhaus-Henze 40.9175 1.33227 ×10-15

Cramér-von Mises 5.34988 0.
Jarque-Bera ALM 19573.1 0.
Kolmogorov-Smirnov 0.0964715 0.
Kuiper 0.182951 0.
Mardia Combined 19573.1 0.
Mardia Kurtosis 138.918 0.

Mardia Skewness 55.1378 1.12368 ×10-13

Pearson χ2 252.438 3.46334 ×10-35

Shapiro-Wilk 0.854209 6.31029 ×10-34

Watson U2 5.34971 0.

Pairs Trading.nb 11

But this is one of those instances in finance where non-Normality doesn’t matter: all that concerns us
is that the series is stationary and therefore that the mean and variance are time-invariant and the
process is consequently mean reverting.

In the early days of pairs trading it was quite commonplace to make the simplifying assumption that
the model residuals followed a Normal distribution: then we might regard a value of +/- 1.96 in the
standardized Zscores, corresponding to the 5%-tile and 95%-tile of the Normal distribution, as appropri-
ate levels for entry signals. But there really isn’t any need to make such a heroic assumption. First of
all, we know for sure that the distribution of the Zscores from our model is non-Gaussian. Secondly, in
the Kalman model you standardize the residuals, not in the usual way by using their estimated stan-
dard deviation, but by using the square root of the estimate of the time-varying variance of the system
state at each time step. So the overall standard deviation of the Zscores in this example is not 1, but
closer to 0.25, as we have shown above.

Either way it doesn’t matter, because the Gaussian assumption is unnecessary; we have empirical
data from which we can select suitable entry signals, using appropriate quantiles of the empirical
distribution:

In[]:=  = EmpiricalDistribution[tsZscores]

Out[]=

DataDistribution
Type: Empirical
Data points: 1384



The quantile of the empirical distribution that is used for trade entry signals is one of the system
hyperparameters that can be tuned. However, this get perilously close to curve-fitting, in my view. I
prefer to select a “sensible” quantile value, even if it isn’t necessarily the optimal level - if the strategy
works at all, it should work pretty well across a range of reasonable values, or else it is likely to prove
too unreliable out of sample.

In this model, the entry level quantile is determined by the parameter levelSpacing, which I have set to
0.5, slightly less that 2x the standard deviation of the Zscores. This means that a Zscore of -0.5 or less
will trigger a long entry signal, while a value of 0.5 or more will trigger a short entry. These values
correspond to the 2.3%-tile and 98%-tile of the distribution, respectively:

In[]:= CDF[, {-levelSpacing, levelSpacing}]

Out[]=

{0.0231214, 0.979769}

There is nothing magical about this choice of entry level. You might just as easily have chosen the 5%-
tile and 95%-tile levels of the distribution, i.e.

In[]:= Quantile[, {0.05, 0.95}]

Out[]=

{-0.348798, 0.336549}

What' s important, however, is that you select a level that produces enough, but not too many trades.
If the system generates too few trades it will be difficult to assess its robustness and likelihood of

12 Pairs Trading.nb

continuing success, going forward. Generating too many trades, on the other hand, may see your
profits eviscerated by transaction costs. So the aim should be for an entry level that provides a reason-
able balance. For a pairs strategy built using daily data, around one trade per quarter might be an
appropriate guideline. If that seems like quite a low number, bear in mind that in a pairs trading
system you would typically expect to be trading a universe comprising dozens of stock pairs, which in
aggregate will generate multiple trading signals every week.

Trade Exits

Without wishing to get too deep into the weeds, there are a couple of other choices that need to be
made with regard to trading signals. The first is to decide what to do about trade exits. There are
various schemes for this. A common approach, which is the one adopted here, is to hold the current
position until a signal is received in the opposite direction, a scheme which is known as “stop and
reverse”. An equally common alternative is to exit an open position when the Zscore crosses the zero
line. This will usually produce a larger number of trades of shorter duration and with lower average
profit. The first approach is certainly a little simpler, but there is no compelling argument to be made
one way or another.

Out[]=

Enter Short

Exit and Enter Long

10 20 30 40 50

-1.5

-1.0

-0.5

0.5

1.0

1.5

Scheme 1: Stop and Reverse

Out[]=

Enter Short

Exit

Enter Long

10 20 30 40 50

-1.5

-1.0

-0.5

0.5

1.0

1.5

Scheme 2: Exit on Zero Crossing

Pairs Trading.nb 13

Repeated Signals / Multiple Entries

The second choice that needs to be made is what to do about repeated signals, i.e. when a signal that
exceeds the threshold level is followed by another signal (in the same direction) that also exceeds the
threshold (or an even higher level). The signals may follow one another in sequence, or there may be a
delay of several periods between the first and subsequent signals.

The default action of the system in the ZscoreSignals function is to process only the first such signal,
but the parameter maxTrades can be configured so that additional signals are considered. More
specifically, the total size of the position taken is dependent on (a) the maxTrades parameter value and
(b) the magnitude of the signal as a multiple of the levelSpacing parameter. With the value of levelSpac-
ing set to 0.5 and maxTrades set to 2 or higher, the value specified in this example, the system will
produce a short trade 2x the default size if a Zscore is encountered that is greater than 1.0 (twice the
value of the levelSpacing parameter), while a short trade of 3x the default size is generated for a Zscore
value of 1.5, or higher.

Out[]=

Sell Signal

Sell Signal

Sell Signal

2 4 6 8

0.5

1.0

1.5

Multiple Entries

Here we set maxTrades = 1 and take only the first signal, ignoring subsequent signals in the same
direction as the previous one:

In[]:= tsSignals = ZscoreSignals[tsZscore, levelSpacing, maxTrades]

Out[]=

EventSeries
Time: 05 Jul 2017 to 30 Dec 2022
Data points: 1384



Finally, we truncate the signals time series to the window defined by the start and end date parame-
ters, before moving on to strategy backtesting.

In[]:= tsSignals = TimeSeriesWindow[tsSignals, {startDate, endDate}]

Out[]=

EventSeries
Time: 02 Jan 2018 to 30 Dec 2022
Data points: 1259



14 Pairs Trading.nb

In[]:= DateListPlot[tsSignals, Joined  False, Filling  Axis]

Out[]=

2018 2020 2022

-1.0

-0.5

0.0

0.5

1.0

Notes

◼ More on the Kalman filter in pairs trading

◼ Wolfram documentation on the DistributionFitTest function

◼ A detailed note on Unit Root Tests

Pairs Trading.nb 15

http://jonathankinlay.com/2018/09/statistical-arbitrage-using-kalman-filter/
https://reference.wolfram.com/language/ref/DistributionFitTest.html
https://faculty.washington.edu/ezivot/econ584/notes/unitroot.pdf

