Pairs Trading with Copulas

Introduction

In a previous post, Copulas in Risk Management, | covered the theory and applications of copulas in
the area of risk management, pointing out the potential benefits of the approach and how it could be
used to improve estimates of Value-at-Risk by incorporating important empirical features of asset
processes, such as asymmetric correlation and heavy tails.

In this post | take a different tack, to show how copula models can be applied in pairs trading and
statistical arbitrage strategies.

This is not a new concept - it stems from when copulas began to be widely adopted in financial
engineering, risk management and credit derivatives modeling. But it remains relatively under-
explored compared to more traditional techniques in this field. Fresh research suggests that it may
be a useful adjunct to the more common methods applied in pairs trading, and may even be a more
robust methodology altogether, as we shall see.

Traditional Approaches to Pairs Trading

Researchers often use simple linear correlation or distance metrics as the basis for their statistical
arbitrage strategies. The problem is that statistical relationships may be nonlinear or nonstationary.
Correlations (and betas) that have fluctuated in a defined range over a considerable period of time
may suddenly break down, producing substantial losses.

A more sophisticated technique is the Kalman Filter, which can be used as a means of dynamically
updating the the estimated correlation or relative beta between pairs (or portfolios) of stocks, a
technique | have written about in the post Statistical Arbitrage with the Kalman Filter.

Another commonly employed econometric technique relies on cointegration relationships between
pairs or small portfolios of stocks, as described in my post on Developing Statistical Arbitrage
Strategies Using Cointegration. The central idea is that, in theory, cointegration is a more stable
and reliable basis for assessing the relationship between stocks than correlation.

Researchers often use a combination of methods, for example by requiring stocks to be both cointe-
grated and with stable, high correlation throughout the in-sample formation period in which betas
are estimated.

In all these cases, however, the challenge is that, no matter how they are derived or estimated,
statistical relationships have a tendency towards instability. Even a combination of several of these
methods often fails to detect signs of a breakdown in statistical relationships. There is even evi-
dence that cointegration models are no more robust or reliable than simple correlations. For exam-
ple, in his paper On the Persistence of Cointegration in Pairs Trading, Matthew Clegg assess the
persistence of cointegration among U.S. equities in the calendar years 2002-2012, comprising over
860,000 pairs in total. He concludes that “the evidence does not support the hypothesis that cointe-
gration is a persistent property”.


http://jonathankinlay.com/2017/01/copulas-risk-management/
http://jonathankinlay.com/2015/02/statistical-arbitrage-using-kalman-filter/
http://jonathankinlay.com/2015/02/developing-statistical-arbitrage-strategies-using-cointegration/
http://jonathankinlay.com/2015/02/developing-statistical-arbitrage-strategies-using-cointegration/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2491201
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Pairs Trading in the S&P500 and Nasdaq Indices

To illustrate the copula methodology | will use an equity pair comprising the S&P 500 and Nasdaq
indices. These are not tradable assets, but the approach is the same regardless and will serve for
the purposes of demonstrating the technique.

We begin by gathering daily data on the indices and calculating the log returns series. We will use
the data from 2010 to 2015 as the in-sample “formation” period, and test the strategy out of sample
on data from Jan 2016-Feb 2017.

neei]= SP500prices = FinancialData["AGSPC", {{2010, 2, 1}, {2015, 12, 31}}];
NASDAQprices = FinancialData["AIXIC", {{2010, 2, 1}, {2015, 12, 31}}];
SP500returns =

Log[Drop[SP500prices[[All, 2]], 1]1] - Log[Drop[SP500prices[[All, 2]], -1]1;
NASDAQreturns = Log[Drop [NASDAQprices[[All, 211, 1]1] -
Log[Drop [NASDAQprices[[All, 211, -111;

ineesj= TableForm[Through[{Mean, StandardDeviation, Skewness, Kurtosis}[
Transpose[ {SP500returns, NASDAQreturns}]]],
TableHeadings » {{"Mean", "St. Dev.", "Skewness", "Kurtosis"},
{"SP500", "NASDAQ"}}, TableAlignments - Right]

Out[265]//TableForm=

SP500 NASDAQ

Mean 0.000422446 0.000560831

St. Dev. 0.0100346 0.011161
Skewness -0.4382 -0.399741
Kurtosis 7.30258 6.37971

nzeei= Pl = Histogram[SP500returns, PlotLabel » "log returns SP500"];
p2 = Histogram[NASDAQreturns, PlotLabel -» "log returns NASDAQ"];
GraphicsRow[{pl, p2}, ImageSize -» Large]
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The chart below shows a scatter plot of daily percentage log returns on the SP500 and NASDAQ
indices.
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nezeoy= ListPlot[Transpose[{SP500returns, NASDAQreturns}]]

Out[269]=

Modeling

Marginal Distribution Fitting

In the post Copulas in Risk Management it was shown that the returns series for the two indices
were well-represented by Student T distributions. | replicate that analysis here, estimating the
parameters by maximum likelihood and proceed from there to test each distribution for goodness of
fit. In each case, the Student T distribution appears to provide an adequate fit for both series.

in270]= paramsSP500 =
FindDistributionParameters[SP500returns, StudentTDistribution[ui, o1, v1]]
paramsNasdaq = FindDistributionParameters|
NASDAQreturns, StudentTDistribution[u;, o2, v2]]

outiz70l= {1 - 0.000756905, 0; - 0.00652215, v; » 3.07017}

outiz71]= {2 - 0.00100186, o, - 0.00778899, v, - 3.55854}

ne72= Hy = DistributionFitTest[SP500returns,
StudentTDistribution[u;, o1, vi], "HypothesisTestData"] /. paramsSP500;
DistributionFitTest[NASDAQreturns, StudentTDistribution[u,, o2, v21,
"HypothesisTestData"] /. paramsNasdaq;
Grid[{{" ", "Hypothesis Tests - ", " "}, {(" ", "Student T Distribution", " "},
{"SP500", " ", "NASDAQ"}, {H.["TestDataTable", All],
Spacer[200], H,["TestDataTable", Al1]}}, Frame - True]

Ho

Hypothesis Tests -
Student T Distribution
SP500 NASDAQ

Statistic P-Value Statistic P-Value
Anderson-Darling 1.00789 0.353124 Anderson-Darling 1.36378 0.212606
Out[274]= | Cramér-von Mises | 0.123493 0.481474 Cramér-von Mises | 0.150149  0.389121
Kolmogorov- 0.0198501 0.592803 Kolmogorov- 0.0226795 0.421319

Smirnov Smirnov

Kuiper 0.0344522 0.31151 Kuiper 0.0380147 0.176208
Pearson x? 45.6591 0.15541 Pearson x? 41.2725  0.289235

Watson U2 0.107264 0.240234 Watson U2 0.12943 0.15548

Copula Calibration
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We next calibrate the parameters for the Gaussian copula by maximum likelihood, from which we
derive the joint distribution for returns in the two indices via Sklar's decomposition. This will be used
directly in the pairs trading algorithm. As pointed out previously, there are several alternatives to
MLE, including the Method of Moments, for example, and these are listed in the Mathematica
documentation for the EstimatedDistrubution function.

ne7si= D = CopulaDistribution[{"Multinormal", {{1, o}, {p, 1}}},
{StudentTDistribution[u;, o1, v1] /. paramsSP500,
StudentTDistribution[u,, o0, v2] /. paramsNasdaq}] ;
D = EstimatedDistribution[Transpose[{SP500returns, NASDAQreturns}], D]

ouezel= CopulaDistribution[ {Multinormal, {{1, ©0.947917}, {0.947917, 1}}},
{StudentTDistribution[0.000756905, 0.00652215, 3.07017],
StudentTDistribution[0.00100186, 0.00778899, 3.55854]}]

in277:= PLot3D[PDF[D, {Xx, y}1, {x, -0.05, 0.05},
{y, -0.05, 0.05}, PlotRange » All, ImageSize - Large]
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ine7el= GraphicsRow[
{ListPlot[Transpose[{SP500returns, NASDAQreturns}], ImageSize -» Medium,
PlotLabel -> Style["Empirical", Bold]], ListPlot[RandomVariate[D, 10"3],
ImageSize -» Medium, PlotLabel -> Style["Gaussian Copula", Bold]]}]

Empirical Gaussian Copula
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Pairs Trading with the Copula Model

Once we have successfully fitted marginal distributions for the two series and a copula distribution
to describe their relationship, we are able to derive the joint distribution. This means that we can
directly calculate the joint probability of each pair of data observations. So, for instance, we find that
the probability of a return in the S&P500 of 5% or more, together with a return in the Nasdaq of 1%
or higher, is approximately 0.2%:

ine79p= Probability[SP500 > 0.05 A Nasdaq > 0.01, {SP500, Nasdaq} ~ D]
oute79l= 0.00222217

So the way we test our model is to calculate the daily returns for the two indices during the-out-of
sample period from Jan 2016 to Feb 2017 and compute the probability of each pair of daily observa-
tions. On days where we see observation pairs with abnormally low estimated probabilities, we
trade the pair accordingly over the following day.

Naturally, there are multiple issues with this simplistic approach. To begin with, the indices are not
tradable and if they were we would have to account for transaction costs including the bid-offer
spread. Then there is the issue of determining where to set the probability threshold for initiating a
trade. We also need to decide on criteria to try to optimize the trade holding period or trade exit
rules. And, finally, we need to think about trade expression: for example, we might attempt to trade
both legs passively, perhaps crossing the spread to fill the remaining leg when an order for one of
the pairs is filled.

But none of these issues are specific to the copula approach - they apply equally to all of the meth-
ods discussed previously. So, for the sake of clarity, | am going to ignore them. In this analysis |
pick a threshold probability level of 15% and assume we hold the trade for one day only, opening
and closing the trade at the start and end of the day after we receive a signal. In computing the
returns for each trade | ignore any transaction costs.

First, we gather data for the test period:
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In[280]:=

In[284]:=

Out[285]=

In[286]:=

Out[286]=

In[287]:=

Out[287]=

SP500pricesOS = FinancialData["AGSPC", {{2015, 12, 31}, {2017, 2, 28}}1;
NASDAQpricesOS = FinancialData["AIXIC", {{2015, 12, 31}, {2017, 2, 28}}]1;
SP500returns0S =
Log[Drop[SP500pricesOS[[All, 2]], 1]] - Log[Drop[SP500pricesOS[[All, 2]]1, -1]1;
NASDAQreturnsOS = Log[Drop [NASDAQpricesOS[[All, 2]], 1]] -
Log[Drop [NASDAQpricesOS[[All, 211, -111;
Next, we use the estimated joint distribution to compute the probability of each daily observation of

index returns. We gather the daily returns series and associated probability series into a single
temporal variable:

Probs = Table[{ SP500returnsOS[[i]] , NASDAQreturnsOS[[i]],
Probability[x > SP500returnsOS[[i]l] AY > NASDAQreturnsOS[[i]], {x, Y} D]},
{i, 1, Length[SP500returns0S]}];
tdProbs = TemporalData[Transpose[Probs], {{2016, 1, 4}, Automatic, "BusinessDay"}]

—

TemporalData|

Time: 04 Jan 2016 to 01 Mar 2017
M Data points: 873 Paths: 3

We plot the time series of index returns and associated probabilities as follows:
DateListPlot[tdProbs["Paths"]1[[{2, 1}1],
PlotLegends -» {'"Nasdaq", "SP500"}, PlotLabel » "Index Returns 2016-2017"]

Index Returns 2016-2017
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DateListPlot[tdProbs["Paths"][[3]], PlotLabel - "Joint Probabilities"]

Joint Probabilities
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Trade Signal Generation

The table below lists the index returns and joint probabilities over the first several days of the series.
The sequence of trade signals is as follows:

After a very low probability reading for 2016/1/4, we take equally weighted positions short the
S&P500 Index and long the Nasdaq index on 2016/1/5. We close the position at the end of the day,
producing a total return of 0.44%. Similar signals are generated on 2016/1/6, 2016/1/7, 2016/1/8,
2016/1/13 , 2016/1/15 and 2016/1/20 (assuming a 15% probability threshold). We take the reverse
trade (Buy the S&P500, Sell the Nasdaq) on only one occasion in the initial part of the sample, on
2016/1/14.

niessy= SampleDates = Take[Flattene@etdProbs["DatelList"], 12];
PaddedForm[
TableForm[Take[Transpose[tdProbs["ValuelList"]], 12], TableAlignments » Right,
TableHeadings » {Table[DateString[sampleDates[[i]], "ISODate"], {i, 1, 12}],
{"SP500", "Nasdaq", "Prob."}}]1, {3, 4}]

Out[289]//PaddedForm=

SP500 Nasdaq Prob.
2016-01-04 -0.0154 -0.0211 0.9490
2016-01-05 0.0020 -0.0024 0.4200
2016-01-06 -0.0132 -0.0114 0.8900
2016-01-07 -0.0240 -0.0307 0.9810
2016-01-08 -0.0109 -0.0098 0.8590
2016-01-11 0.0009 -0.0012 0.4600
2016-01-12 0.0078 0.0103 0.1230
2016-01-13 -0.0253 -0.0347 0.9840
2016-01-14 0.0166 0.0195 0.0306
2016-01-15 -0.0218 -0.0278 0.9760
2016-01-19 0.0005 -0.0026 0.4890
2016-01-20 -0.0118 -0.0012 0.6020

Pairs Trading Strategy Results
We are now ready to apply the trading algorithm to the entire sample and chart the resulting P&L.

inEos= o = 0.12;
signals = HeavisideTheta[#- (1-a)] -HeavisideTheta[a-#] & /@
tdProbs["ValueList"]1[[3]];
ptReturns = Totale@e Transposee@ (Most@Transpose@{s*ignals, -signals} x
Rest@Transpose@tdProbs["ValueList"][[1 ;; 2]]);
tsVTD = TimeSeries[FoldList[Times, 1600, eP®e™™], ({2016, 1, 4}, {2017, 2, 28}}]

. . Time: 04 Jan 2016 to 28 Feb 2017
oupi- TimeSeries| Data points: 291 ]
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In[312]:=

out[312]=

DateListPlot[tsVTD, Filling -» Axis,

PlotLabel -» "Value of $1,000, Pairs Trading Strategy, 2016-2017"]
Value of $1,000, Pairs Trading Strategy, 2016-2017
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Comment on Strategy Performance

Despite the earlier caveats, the performance of the strategy over the out-of-sample period, at just
over 22%, is encouraging. The typical steps from here would be to create similar trading algorithms
for a large number of pairs and combine them together in an overall portfolio that will produce a
sufficient number of signals and trading opportunities to make the performance sufficiently attrac-
tive. One of the benefits of statistical arbitrage strategies developed in this way is their highly
efficient use of capital, since the combination of long and short positions minimizes the margin
requirement for each trade and for the portfolio as a whole.

Finally, it is worth noting here that, in principle, one could easily create similar copula-based arbi-
trage strategies for triplets, quadruplets, or any (reasonably small) number of assets. The principle
restriction lies in the increasing difficulty of estimating the copulas and joint densities, given the slow
convergence of the MLE method.

Recent Research

In the last few years several researchers have begun exploring the application of copulas as a basis
for statistical arbitrage. In their paper Nonlinear dependence modeling with bivariate copulas:
Statistical arbitrage pairs trading on the S&P 100, Krauss and Stubinger apply the copula approach
to pairs drawn from the universe of S&P 100 index constituents, with promising results. They
conclude that their “findings pose a severe challenge to the semi-strong form of market efficiency
and demonstrate a sophisticated yet profitable alternative to classical pairs trading”.

In the paper by Rad, et al., cited below, the researchers compare several different methods for pairs
trading strategies. They find that all of the tested methods produce economically significant returns,
but only the performance of the copula-based approach remains consistent after 2009. Further, the
copula method shows better performance for its unconverged trades compared to those of the other
methods.

Conclusion

The application of copulas to statistical arbitrage strategies is an interesting and relatively under-
explored alternative to the usual distance and correlation based methods. In addition to its sound
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theoretical underpinnings, the copula approach appears to offer greater consistency in performance
compared to traditional techniques, whose efficacy has declined since the financial crisis on
2008/09. The benefits of the approach must be weighed against its greater computational complex-
ity, although with the growth in the power of modeling software in recent years this represents less
of an obstacle than it has previously.
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