
��������������������������

������������
In a previous post, Copulas in Risk Management, I covered the theory and applications of copulas in 

the area of risk management, pointing out the potential benefits of the approach and how it could be 

used to improve estimates of Value-at-Risk by incorporating important empirical features of asset 
processes, such as asymmetric correlation and heavy tails.

In this post I take a different tack, to show how copula models can be applied in pairs trading and 

statistical arbitrage strategies.

This is not a new concept - it stems from when copulas began to be widely adopted in financial 
engineering, risk management and credit derivatives modeling. But it remains relatively under-
explored compared to more traditional techniques in this field.  Fresh research suggests that it may 
be a useful adjunct to the more common methods applied in pairs trading, and may even be a more 

robust methodology altogether, as we shall see.
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Researchers often use simple linear correlation or distance metrics as the basis for their statistical 
arbitrage strategies.  The problem is that statistical relationships may be nonlinear or nonstationary.  
Correlations (and betas) that have fluctuated in a defined range over a considerable period of time 

may suddenly break down, producing substantial losses.

A more sophisticated technique is the Kalman Filter, which can be used as a means of dynamically 
updating the the estimated correlation or relative beta between pairs (or portfolios) of stocks, a 

technique I have written about in the post Statistical Arbitrage with the Kalman Filter. 

Another commonly employed econometric technique relies on cointegration relationships between 

pairs or small portfolios of stocks, as described in my post on Developing Statistical Arbitrage 

Strategies Using Cointegration.  The central idea is that, in theory, cointegration is a more stable 

and reliable basis for assessing the relationship between stocks than correlation.

Researchers often use a combination of methods, for example by requiring stocks to be both cointe-
grated and with stable, high correlation throughout the in-sample formation period in which betas 
are estimated.

In all these cases, however, the challenge is that, no matter how they are derived or estimated, 
statistical relationships have a tendency towards instability.  Even a combination of several of these 

methods often fails to detect signs of a breakdown in statistical relationships.  There is even evi-
dence that cointegration models are no more robust or reliable than simple correlations.  For exam-
ple, in his paper On the Persistence of Cointegration in Pairs Trading, Matthew Clegg assess the 

persistence of cointegration among U.S. equities in the calendar years 2002-2012, comprising over 
860,000 pairs in total.  He concludes that “the evidence does not support the hypothesis that cointe-
gration is a persistent property”.

http://jonathankinlay.com/2017/01/copulas-risk-management/
http://jonathankinlay.com/2015/02/statistical-arbitrage-using-kalman-filter/
http://jonathankinlay.com/2015/02/developing-statistical-arbitrage-strategies-using-cointegration/
http://jonathankinlay.com/2015/02/developing-statistical-arbitrage-strategies-using-cointegration/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2491201
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To illustrate the copula methodology I will use an equity pair comprising the S&P 500  and Nasdaq 

indices.  These are not tradable assets, but the approach is the same regardless and will serve for 
the purposes of demonstrating the technique.

We begin by gathering daily data on the indices and calculating the log returns series.  We will use 

the data from 2010 to 2015 as the in-sample “formation” period, and test the strategy out of sample 

on data from Jan 2016-Feb 2017.

��������� SP500prices = FinancialData["^GSPC", {{2010, 2, 1}, {2015, 12, 31}}];
NASDAQprices = FinancialData["^IXIC", {{2010, 2, 1}, {2015, 12, 31}}];
SP500returns =

Log[Drop[SP500prices[[All, 2]], 1]] - Log[Drop[SP500prices[[All, 2]], -1]];
NASDAQreturns = Log[Drop[NASDAQprices[[All, 2]], 1]] -

Log[Drop[NASDAQprices[[All, 2]], -1]];

��������� TableForm[Through[{Mean, StandardDeviation, Skewness, Kurtosis}[
Transpose[{SP500returns, NASDAQreturns}]]],

TableHeadings → {{"Mean", "St. Dev.", "Skewness", "Kurtosis"},
{"SP500", "NASDAQ"}}, TableAlignments → Right]
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SP500 NASDAQ
Mean 0.000422446 0.000560831

St. Dev. 0.0100346 0.011161
Skewness -0.4382 -0.399741
Kurtosis 7.30258 6.37971

��������� p1 = Histogram[SP500returns, PlotLabel → "log returns SP500"];
p2 = Histogram[NASDAQreturns, PlotLabel → "log returns NASDAQ"];
GraphicsRow[{p1, p2}, ImageSize → Large]
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The chart below shows a scatter plot of daily percentage log returns on the SP500 and NASDAQ 

indices. 
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��������� ListPlot[Transpose[{SP500returns, NASDAQreturns}]]
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In the post Copulas in Risk Management it was shown that the returns series for the two indices 
were well-represented by Student T distributions.  I replicate that analysis here, estimating the 

parameters by maximum likelihood and proceed from there to test each distribution for goodness of 
fit.  In each case, the Student T distribution appears to provide an adequate fit for both series.

��������� paramsSP500 =

FindDistributionParameters[SP500returns, StudentTDistribution[μ1, σ1, ν1]]

paramsNasdaq = FindDistributionParameters[
NASDAQreturns, StudentTDistribution[μ2, σ2, ν2]]

��������� {μ1 → 0.000756905, σ1 → 0.00652215, ν1 → 3.07017}

��������� {μ2 → 0.00100186, σ2 → 0.00778899, ν2 → 3.55854}

��������� ℋ1 = DistributionFitTest[SP500returns,
StudentTDistribution[μ1, σ1, ν1], "HypothesisTestData"] /. paramsSP500;

ℋ2 = DistributionFitTest[NASDAQreturns, StudentTDistribution[μ2, σ2, ν2],
"HypothesisTestData"] /. paramsNasdaq;

Grid[{{" ", "Hypothesis Tests - ", " "}, {" ", "Student T Distribution", " "},
{"SP500", " ", "NASDAQ"}, {ℋ1["TestDataTable", All],
Spacer[200], ℋ2["TestDataTable", All]}}, Frame → True]
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We next calibrate the parameters for the Gaussian copula by maximum likelihood, from which we 

derive the joint distribution for returns in the two indices via Sklar’s decomposition.  This will be used 

directly in the pairs trading algorithm.  As pointed out previously, there are several alternatives to 

MLE, including the Method of Moments, for example, and these are listed in the Mathematica 

documentation for the EstimatedDistrubution function.

���������  = CopulaDistribution[{"Multinormal", {{1, ρ}, {ρ, 1}}},
{StudentTDistribution[μ1, σ1, ν1] /. paramsSP500,
StudentTDistribution[μ2, σ2, ν2] /. paramsNasdaq}] ;

 = EstimatedDistribution[Transpose[{SP500returns, NASDAQreturns}], ]

��������� CopulaDistribution[{Multinormal, {{1, 0.947917}, {0.947917, 1}}},
{StudentTDistribution[0.000756905, 0.00652215, 3.07017],
StudentTDistribution[0.00100186, 0.00778899, 3.55854]}]

��������� Plot3D[PDF[, {x, y}], {x, -0.05, 0.05},
{y, -0.05, 0.05}, PlotRange → All, ImageSize → Large]
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��������� GraphicsRow[
{ListPlot[Transpose[{SP500returns, NASDAQreturns}], ImageSize → Medium,

PlotLabel -> Style["Empirical", Bold]], ListPlot[RandomVariate[, 10^3],
ImageSize → Medium, PlotLabel -> Style["Gaussian Copula", Bold]]}]
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Once we have successfully fitted marginal distributions for the two series and a copula distribution 

to describe their relationship, we are able to derive the joint distribution.  This means that we can 

directly calculate the joint probability of each pair of data observations.  So, for instance, we find that 
the probability of a return in the S&P500 of 5% or more, together with a return in the Nasdaq of 1% 

or higher, is approximately 0.2%:

��������� Probability[SP500 > 0.05  Nasdaq > 0.01, {SP500, Nasdaq}  ]

��������� 0.00222217

So the way we test our model is to calculate the daily returns for the two indices during the-out-of 
sample period from Jan 2016 to Feb 2017 and compute the probability of each pair of daily observa-
tions.  On days where we see observation pairs with abnormally low estimated probabilities, we 

trade the pair accordingly over the following day.

Naturally, there are multiple issues with this simplistic approach.  To begin with, the indices are not 
tradable and if they were we would have to account for transaction costs including the bid-offer 
spread.  Then there is the issue of determining where to set the probability threshold for initiating a 

trade.  We also need to decide on criteria to try to optimize the trade holding period or trade exit 
rules.  And, finally, we need to think about trade expression: for example, we might attempt to trade 

both legs passively, perhaps crossing the spread to fill the remaining leg when an order for one of 
the pairs is filled.

But none of these issues are specific to the copula approach - they apply equally to all of the meth-
ods discussed previously.  So, for the sake of clarity, I am going to ignore them.  In this analysis I 
pick a threshold probability level of 95% and assume we hold the trade for one day only, opening 

and closing the trade at the start and end of the day after we receive a signal. In computing the 

returns for each trade I ignore any transaction costs.

First, we gather data for the test period:
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��������� SP500pricesOS = FinancialData["^GSPC", {{2015, 12, 31}, {2017, 2, 28}}];
NASDAQpricesOS = FinancialData["^IXIC", {{2015, 12, 31}, {2017, 2, 28}}];
SP500returnsOS =

Log[Drop[SP500pricesOS[[All, 2]], 1]] - Log[Drop[SP500pricesOS[[All, 2]], -1]];
NASDAQreturnsOS = Log[Drop[NASDAQpricesOS[[All, 2]], 1]] -

Log[Drop[NASDAQpricesOS[[All, 2]], -1]];

Next, we use the estimated joint distribution to compute the probability of each daily observation of 
index returns.  We gather the daily returns series and associated probability series into a single 

temporal variable:

��������� Probs = Table[{ SP500returnsOS[[i]] , NASDAQreturnsOS[[i]],
Probability[x > SP500returnsOS[[i]]  y > NASDAQreturnsOS[[i]], {x, y}  ]},

{i, 1, Length[SP500returnsOS]}];
tdProbs = TemporalData[Transpose[Probs], {{2016, 1, 4}, Automatic, "BusinessDay"}]

��������� TemporalData ����� �� ��� ���� �� �� ��� ����
���� ������� ��� ������ � 

We plot the time series of index returns and associated probabilities as follows:

��������� DateListPlot[tdProbs["Paths"][[{2, 1}]],
PlotLegends → {"Nasdaq", "SP500"}, PlotLabel → "Index Returns 2016-2017"]
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��������� DateListPlot[tdProbs["Paths"][[3]], PlotLabel → "Joint Probabilities"]
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The table below lists the index returns and joint probabilities over the first several days of the series.  
The sequence of trade signals is as follows: 

After a very high probability reading for 2016/1/7, we take equally weighted positions short the 

S&P500 Index and long the Nasdaq index on 2016/1/8.  We close the position at the end of the day, 
producing a total return of 0.11%.  Similar signals are generated on 2016/1/13 and 2016/1/15 

(assuming a 95% probability threshold).  We take the reverse trade (Buy the S&P500, Sell the 

Nasdaq) on only one occasion in the initial part of the sample, on 2016/1/15, after a very low probabil-
ity reading of 3% on 2016/1/14, producing a gain of 0.6%.

��������� sampleDates = Take[Flatten@tdProbs["DateList"], 12];
PaddedForm[
TableForm[Take[Transpose[tdProbs["ValueList"]], 12], TableAlignments → Right,
TableHeadings → {Table[DateString[sampleDates[[i]], "ISODate"], {i, 1, 12}],

{"SP500", "Nasdaq", "Prob."}}], {3, 4}]
���������������������

SP500 Nasdaq Prob.
2016-01-04 -0.0154 -0.0211 0.9490
2016-01-05 0.0020 -0.0024 0.4200
2016-01-06 -0.0132 -0.0114 0.8900
2016-01-07 -0.0240 -0.0307 0.9810
2016-01-08 -0.0109 -0.0098 0.8590
2016-01-11 0.0009 -0.0012 0.4600
2016-01-12 0.0078 0.0103 0.1230
2016-01-13 -0.0253 -0.0347 0.9840
2016-01-14 0.0166 0.0195 0.0306
2016-01-15 -0.0218 -0.0278 0.9760
2016-01-19 0.0005 -0.0026 0.4890
2016-01-20 -0.0118 -0.0012 0.6020

������������������������������

We are now ready to apply the trading algorithm to the entire sample and chart the resulting P&L.  
As they are market neutral, pairs trades are typically leveraged by substantial multiples. In the 

following analysis we assume a leverage factor of 10.

��������� α = 0.95; Leverage = 10;
signals = HeavisideTheta[# - (1 - α)] - HeavisideTheta[α - #] & /@

tdProbs["ValueList"][[3]];

ptReturns = Leverage * Total@ Transpose@Most@Transpose@{signals, -signals} ×

Rest@Transpose@tdProbs["ValueList"][[1 ;; 2]];

tsVTD = TimeSeriesFoldListTimes, 1000, ⅇ
ptReturns

, {{2016, 1, 4}, {2017, 2, 28}}

��������� TimeSeries ����� �� ��� ���� �� �� ��� ����
���� ������� ��� 
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��������� DateListPlot[tsVTD, Filling → Axis,
PlotLabel → "Value of $1,000, Pairs Trading Strategy, 2016-2017"]
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Despite the earlier caveats, the performance of the strategy over the out-of-sample period, at just 
over 22%, is encouraging.  The typical steps from here would be to create similar trading algorithms 
for a large number of pairs and combine them together in an overall portfolio that will produce a 

sufficient number of signals and trading opportunities to make the performance sufficiently attrac-
tive.  One of the benefits of statistical arbitrage strategies developed in this way is their highly 
efficient use of capital, since the combination of long and short positions minimizes the margin 

requirement for each trade and for the portfolio as a whole.

Finally, it is worth noting here that, in principle, one could easily create similar copula-based arbi-
trage strategies for triplets, quadruplets, or any (reasonably small) number of assets.  The principle 

restriction lies in the increasing difficulty of estimating the copulas and joint densities, given the slow 

convergence of the MLE method.

���������������
In the last few years several researchers have begun exploring the application of copulas as a basis 
for statistical arbitrage.  In their paper Nonlinear dependence modeling with bivariate copulas: 
Statistical arbitrage pairs trading on the S&P 100, Krauss and Stubinger apply the copula approach 

to pairs drawn from the universe of S&P 100 index constituents, with promising results.  They 
conclude that their “findings pose a severe challenge to the semi-strong form of market efficiency 
and demonstrate a sophisticated yet profitable alternative to classical pairs trading”.

In the paper by Rad, et al., cited below, the researchers compare several different methods for pairs 
trading strategies.  They find that all of the tested methods produce economically significant returns, 
but only the performance of the copula-based approach remains consistent after 2009.  Further, the 

copula method shows better performance for its unconverged trades compared to those of the other 
methods.

����������
The application of copulas to statistical arbitrage strategies is an interesting and relatively under-
explored alternative to the usual distance and correlation based methods.  In addition to its sound 
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theoretical underpinnings, the copula approach appears to offer greater consistency in performance 

compared to traditional techniques, whose efficacy has declined since the financial crisis on 

2008/09.  The benefits of the approach must be weighed against its greater computational complex-
ity, although with the growth in the power of modeling software in recent years this represents less 
of an obstacle than it has previously.
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