
A Universal Stock Screen Application
Copyright © 2019 Jonathan Kinlay (jonathan@jonathankinlay.com)

Requirement
The requirement was to build a stock screening application capable of filtering worldwide stocks
on the following parameters:

◼ The current stock price is above both the 150-day (30-week) and the 200-day (40-week) moving
average price lines.

◼ The 150-day moving average is above the 200-day moving average.

◼ The 200-day moving average line is trending up for at least 1 month (preferably 4–5 months
minimum in most cases).

◼ The 50-day (10-week) moving average is above both the 150-day and 200-day moving averages.

◼ The current stock price is trading above the 50-day moving average.

◼ The current stock price is at least 30 percent above its 52-week low. (Many of the best selections
will be 100 percent, 300 percent, or greater above their 52-week low before they emerge from a
solid consolidation period and mount a large scale advance.)

◼ The current stock price is within at least 25 percent of its 52-week high (the closer to a new high
the better).

◼ EPS YOY growth +10% (last 3 years)

◼ Revenue YOY growth +10% (last 3 years)

◼ Net Profit Margin YOY growth +10% (last 3 years)

System Architecture
The application was developed in Mathematica and the Wolfram Language. This is a good choice
for rapid prototyping of small applications, as it offers the advantages of speed of development, a
convenient user interface and access to online data sources. More specifically:

◼ The Mathematica front-end provides a convenient and comfortable user interface for small-
scale applications.

◼ Mathematica offers access to Wolfram data sources, including stock data, via its
FinancialData function and the Wolfram Alpha platform.

◼ It is straightforward to develop web-scraping applications in the Wolfram Language, in
order to be able to retrieve data from the Yahoo Finance and other web sites.

◼ WL provides extensive computational capabilities for data manipulation and analysis that
require only limited additional programming to meet the specification.

◼ Although a scripting language such as WL is slower in execution speed than compiled
languages like C++ and Java, this is not a major concern for this application as it would be
for, say, a low-latency high frequency trading system.

◼ On the other hand, WL offers capabilities to parallelize the code very easily, making use of
available multi-core processors to accelerate execution.

◼ The flexibility of the language makes it straightforward to generalize the application to
provide add-on functionality.

The structure of the application is as fol-
lows:

Data Sources

Wolfram provides a reliable source of high quality historical stock data for both US and interna-
tional exchanges. The data can be downloaded efficiently into the Mathematica application using
the WL FinancialData function and manipulated to provide the required moving average and other
time series. The advantage of using Wolfram as the source of historical data is that firstly, there are

2 StockScreener_1_4.nb

no api’s to navigate and secondly, it becomes trivially easy to parameterize the screening filters, for
example to select moving averages of different lengths from those originally specified.

As the breadth of fundamental data offered by Wolfram is insufficient for this application, a second
data source, the Yahoo! Finance platform, is accessed to obtain the required historical fundamental
data. This requires a web scraping function to access and retrieve the data of interest from the
Yahoo web site, which is straightforward to develop in the Wolfram Language.

It is worth noting that Mathematica/WL offers facilities to access data from other commercial
providers, including Bloomberg, as well as trading platforms such as Interactive brokers, via the
C++ api.

Program Structure

It is clearly desirable to separate the data retrieval and screening functions so that the two compo-
nents may be re-engineered and/or plugged into other applications, as required. The web scraping
function retrieves more of the data available from the Yahoo Finance platform than is required for
this application, making it straightforward to extend the capabilities of the screening function.

The screening function is parameterized, with default values as specified in the requirements. So if
the user wishes to relax some of the selection criteria (for example, to require that the stock is
within,say, 50% of the 52-week high), it is trivial to make the necessary adjustments to the function
inputs.

Extensions and Further Development

There are many ways in which this implementation could be enhanced:

◼ Access to other high quality market and fundamental data sources (e.g. Bloomberg, IB)

◼ Re-development to speed up some core components of the code using compilation

◼ Additional error-trapping and event handling

◼ Design of a custom user interface to facilitate the rapid deployment of new filters

◼ Multi-currency reporting

All of these extension can readily be accommodated in the Wolfram language and incorporated into
the application architecture.

Limitations and Assumptions
Given the nature of the assignment a number of assumptions have been made and limitations to
this initial version of the application:

◼ No attempt has been made to cross-check and validate the market and fundamental data
against other sources.

StockScreener_1_4.nb 3

◼ The error trapping in the code is limited and an interruption to the filtering process could occur if
untrapped errors occur.

◼ Changes to the Yahoo Finance platform or api will likely necessitate redevelopment of the web
scraping functionality.

◼ The WL code has not been optimized for speed, nor has any attempt been made to speed up the
execution of the application through compilation, or the use of DLLs.

◼ It is assumed that the analysis will be updated periodically, perhaps monthly or, at most, on a
weekly basis. If it becomes important to update more frequently (say, daily) then attention
should be paid to address possible methods for enhancing the rate of execution.

◼ It is assumed that the standard Mathematica notebook interface will suffice for this initial release
of the application.

◼ No attempt has been made to take account of exchange rates affecting non-US markets.

◼ The quality of the market and fundamental data is unlikely to be equivalent to that available
from commercial providers.

Unit Testing
We apply the StockData function to download fundamental and technical data to be used for
screening purposes on a test stock:

In[]:= {tsClose, tsMAFast, tsMAMedium, tsMASlow, ClosePrice, Summary, Stats, Valuation,

TradingInfo, FinancialHighlights, ShareStatistics, DividendInfo, MAFast,

MAMedium, MASlow, MASlowLag1M , Low52Week, High52Week, Financials,

Revenue, RevenueGrowth3yr, NetIncome, NetProfitMargin, NPMGrowth3yr,

Analysis, EarningsEstimates, RevenueEstimates, EarningsHistory, EPSTrend,

EPSRevisions, GrowthEstimates, EPS, EPSGrowth3yr} = StockData["NYSE:IBM"];

The function returns the value of all of the test criteria variables used for screening, as well as
additional information retrieved from Yahoo! Finance, organized by section, that may be useful in
further analysis.

The function also returns time series in the stock closing prices and also in the fast, medium and
slow moving average series that are set to the specified lengths of 50, 150 and 200 days. However,
the user can easily adjust any of the parameter values to select other moving average lengths, as
required.

4 StockScreener_1_4.nb

In[]:= DateListPlot[{tsClose, tsMASlow}, PlotLabel → "IBM"]

Out[]=

1980 2000 2020
0

50

100

150

200

IBM

The latest closing price and moving average values are as follows:

In[]:= {ClosePrice, MAFast, MAMedium, MASlow, MASlowLag1M}

Out[]= {115.21, 118.407, 133.58, 136.068, 140.042}

Financial Data Check

The downloaded financial information can easily be cross-checked against the data reported on the
Yahoo! Finance site:

In[]:= TableForm[Join[{Revenue, NetIncome, NetProfitMargin, EPS}, 2],

TableHeadings → {{"Revenue", "Net Income", "Net Profit Margin", "EPS (2017-2014)"},

{2018, 2017, 2016, 2015}}]

Out[]//TableForm=

2018 2017 2016 2015

Revenue 7.9139 × 107 7.9919 × 107 8.1741 × 107 9.2793 × 107

Net Income 5.753 × 106 1.1872 × 107 1.319 × 107 1.2022 × 107

Net Profit Margin 0.0726949 0.14855 0.161363 0.129557
EPS (2017-2014) 5.14 2.45 3.08 3.42

Check Net Income Calculations

In[]:= NetIncome  Revenue

Out[]= {0.0726949, 0.14855, 0.161363, 0.129557}

Check Growth Rates (3-year annually compounded)

In[]:= Revenue[[1]]  Revenue[[3]]^1  3.0 - 1

Out[]= -0.0107254

In[]:= RevenueGrowth3yr

Out[]= -0.0107254

In[]:= EPS[[1]]  EPS[[3]]^1  3.0 - 1

Out[]= 0.186144

StockScreener_1_4.nb 5

In[]:= EPSGrowth3yr

Out[]= 0.186144

In[]:= NetProfitMargin[[1]]  NetProfitMargin[[3]]^1  3.0 - 1

Out[]= -0.233404

In[]:= NPMGrowth3yr

Out[]= -0.233404

Screening Test

The StockCriteria function evaluates the stock on each of the ten performance criteria and returns
and overall pass/fail result.

In[]:= {boolPass, boolCondition} = StockCriteria[ClosePrice, MAFast, MAMedium, MASlow,

MASlowLag1M, High52Week, Low52Week, EPSGrowth3yr, RevenueGrowth3yr, NPMGrowth3yr];

The variable boolCondition shows the result of each test criterion:

In[]:= boolCondition

Out[]= {False, False, False, False, False, False, False, True, False, False}

The variable boolPass shows the overall result:

In[]:= boolPass

Out[]= False

The results can be viewed in tabular format:

In[]:= PrintTestResult

Out[]//TableForm=

Overall Result False
Current price is above 150 day MA and 200 day moving averages False
150-day moving average is above the 200-day moving average False
200-day moving average line is trending up for at least 1 month False
50-day moving average is above both the 150-day and 200-day moving averages False
Current stock price is trading above the 50-day moving average False
Current stock price is at least 30 percent above its 52-week low False
Current stock price is within at least 25 percent of its 52-week high False
EPS YOY growth +10% (last 3 years) True
Revenue YOY growth +10% (last 3 years) False
Net Profit Margin YOY growth +10% (last 3 years) False

Stock Screening

Symbology

The Wolfram FinancialData function provides a complete list of stock symbols listed for a specified
exchange. For example, for the LSE there are over 8,000 listed securities:

In[]:= Length[symbolsL = FinancialData["L:*"]]

Out[]= 8239

6 StockScreener_1_4.nb

symbolsL[[RandomInteger[Length@symbolsL, 10]]]

Out[]= symbols[L[{3361, 7950, 4800, 5599, 5845, 1832, 7213, 8044, 3394, 4262}]]

Symbols need to be converted to a format recognized by Yahoo! Finance, using the YahooSymbols
function. For example:

In[]:= YahooSymbol[symbolsL[[RandomInteger[Length@symbolsL, 10]]]]

Out[]= {DNA.L, 0E3C.L, 0QF8.L, AGGG.L, 0RFY.L, LEED.L, GTC.L, OCPA.L, RUSB.L, 0IZ2.L}

Stock Screen: UK (LSE)

We make a random selection of 1,000 LSE stocks for screening:

In[]:= selectedStocksUK = symbolsL[[RandomInteger[Length@symbolsL, 1000]]];

In[]:= selectedStocksUK[[1 ;; 10]]

Out[]= {L:0FTH, L:ALS, L:SBRE, L:0R3Y, L:UC85, L:0JHD, L:SUES, L:LLD5, L:ENDV, L:SUJA}

In[]:= FinancialData[#, "Company"] & /@ selectedStocksUK[[1 ;; 10]] /.

Missing["NotAvailable"] → Nothing

Out[]=  Altus Strategies , Sabre Insurance Group , Lloyds Banking Group , Endeavour International 

Parallelize[result = Quiet[StockScreen[#] & /@ selectedStocksUK];];

screenedStocksUK = selectedStocksUK[[Flatten@Position[result[[;; , 1]], True]]]

Stock Screen: USA (NYSE, NASDAQ)

In[]:= Length[symbolsNYSE = FinancialData["NYSE:*"]]

Length[symbolsNASDAQ = FinancialData["NASDAQ:*"]]

Out[]= 5025

Out[]= 3253

We run the screen for a random selection of 1,000 symbols for the NYSE exchange and show the
results

In[]:= selectedStocksNYSE = symbolsNYSE[[RandomInteger[Length@symbolsNYSE, 1000]]];

selectedStocksNYSE[[1 ;; 10]]

FinancialData[#, "Company"] & /@ selectedStocksNYSE[[1 ;; 10]] /.

Missing["NotAvailable"] → Nothing

Out[]= {NYSE:BIV, NYSE:JCP, NYSE:GDV-PA, NYSE:AQN-U,

NYSE:ULBR, NYSE:EWG, NYSE:JE-PA, NYSE:UWT, NYSE:ASHR, NYSE:ENR}

Out[]=  JC Penney Co , Energizer Holdings 

Parallelize[result = Quiet[StockScreen[#] & /@ selectedStocksNYSE];];

screenedStocksNYSE = selectedStocksNYSE[[Flatten@Position[result[[;; , 1]], True]]]

StockScreener_1_4.nb 7

Stock Screen: Germany (Frankfurt)

In[]:= Length[symbolsF = FinancialData["F:*"]]

Out[]= 16 044

In[]:= selectedStocksF = symbolsDE[[RandomInteger[Length@symbolsF, 1000]]];

selectedStocksF[[1 ;; 10]]

FinancialData[#, "Company"] & /@ selectedStocksF[[1 ;; 10]] /.

Missing["NotAvailable"] → Nothing

Out[]= {F:3M0, F:PI1A, F:XMFA, F:UI4B, F:TIE, F:C6O, F:CE8G, F:UO1G, F:HO9, F:B5R}

Out[]=  Meiji Holdings Co , Pinetree Capital , Sumitomo Mitsui Financial ,

Taiheiyo Cement , Clovis Oncology , HNI , Berkeley Energia 

Parallelize[result = Quiet[StockScreen[#] & /@ selectedStocksF];];

screenedStocksDE = selectedStocksF[[Flatten@Position[result[[;; , 1]], True]]]

Stock Screen: Hong Kong

In[]:= Length[symbolsHK = FinancialData["HK:*"]]

Out[]= 2309

In[]:= selectedStocksHK = symbolsHK[[RandomInteger[Length@symbolsHK, 1000]]];

selectedStocksHK[[1 ;; 10]]

FinancialData[#, "Company"] & /@ selectedStocksHK[[1 ;; 10]] /.

Missing["NotAvailable"] → Nothing

Out[]= {HK:01303, HK:00659, HK:02779, HK:00373,

HK:01200, HK:00565, HK:08228, HK:00581, HK:01466, HK:00028}

Out[]=  Huili Resources (Group) , NWS Holdings , China Xinhua Education Gr ,

Allied Group , Midland Holdings , Art Group Holdings , National Arts Enter ,

China Oriental Grp Co , Affluent Partners Hldgs , Tian An China Investment 

Parallelize[result = Quiet[StockScreen[#] & /@ selectedStocksHK];];

screenedStocksDE = selectedStocksHK[[Flatten@Position[result[[;; , 1]], True]]]

Stock Screen: India (Mumbai)

In[]:= Length[symbolsMU = FinancialData["MU:*"]]

Out[]= 9464

8 StockScreener_1_4.nb

In[]:= selectedStocksMU = symbolsMU[[RandomInteger[Length@symbolsMU, 1000]]];

selectedStocksMU[[1 ;; 10]]

FinancialData[#, "Company"] & /@ selectedStocksMU[[1 ;; 10]] /.

Missing["NotAvailable"] → Nothing

Out[]= {MU:ZPJP, MU:SAOA, MU:REJA, MU:HMT, MU:DX2J, MU:XZGD, MU:VOW4, MU:8NE2, MU:HG4U, MU:GSWE}

Out[]=  Sasol , Reply , Host Hotels & Resorts , Volkswagen , Caladrius Biosciences 

Parallelize[result = Quiet[StockScreen[#] & /@ selectedStocksHK];];

screenedStocksDE = selectedStocksHK[[Flatten@Position[result[[;; , 1]], True]]]

Stock Screen: Singapore

In[]:= Length[symbolsSI = FinancialData["SI:*"]]

Out[]= 898

In[]:= selectedStocksSI = symbolsSI[[RandomInteger[Length@symbolsSI, 1000]]];

selectedStocksSI[[1 ;; 10]]

FinancialData[#, "Company"] & /@ selectedStocksSI[[1 ;; 10]] /.

Missing["NotAvailable"] → Nothing

Out[]= {SI:40N, SI:P5P, SI:42L, SI:K3HD, SI:5JS, SI:5TN, SI:R14, SI:H78, SI:5RC, SI:BQM}

Out[]=  Versalink Holdings , TLV Holdings , Aluminum Corp of China ,

Indofood Agri Resources , IEV Holdings , Ramba Energy ,

Hongkong Land Holdings , ES Group (Holdings) , Tiong Woon Corp Holding 

Parallelize[result = Quiet[StockScreen[#] & /@ selectedStocksHK];];

screenedStocksDE = selectedStocksHK[[Flatten@Position[result[[;; , 1]], True]]]

Wolfram Language Code
StockData[ticker_, MALenFast_: 50, MALenMedium_: 150, MALenSlow_: 200] :=

Module{yahooticker, querystring, tsClose, tsMAFast, tsMAMedium, tsMASlow,

MAFast, MAMedium, MASlow, MASlowLag1M, ClosePrice, Summary, Stats,

Valuation, TradingInfo, FinancialHighlights, ShareStatistics, DividendInfo,

Low52Week, High52Week, Financials, Revenue, RevenueGrowth3yr, NetIncome,

NetProfitMargin, NPMGrowth3yr, Analysis, EarningsEstimates, RevenueEstimates,

EarningsHistory, EPSTrend, EPSRevisions, GrowthEstimates, EPS, EPSGrowth3yr},

(*

===========================⩵===

===========================⩵===

StockData function version 1_0 Jan 2019

Used to dowload historical market and fundamental data

from Wolfram Research and Yahoo! Finance

===========================⩵===

===========================⩵==

*)

(*

===========================⩵===

StockScreener_1_4.nb 9

Download stock price data from Wolfram Research

and calculate Moving Average Series

===========================⩵===

*)

yahooticker = YahooSymbol[ticker];

tsClose = TimeSeries[FinancialData[ticker, "Close", All]];

ClosePrice = Last@tsClose["Values"];

tsMAFast = MovingMap[Mean, tsClose, Quantity[MALenFast, "Days"]];

tsMAMedium = MovingMap[Mean, tsClose, Quantity[MALenMedium, "Days"]];

tsMASlow = MovingMap[Mean, tsClose, Quantity[MALenSlow, "Days"]];

MAFast = Last@tsMAFast["Values"];

MAMedium = Last@tsMAMedium["Values"];

MASlow = Last@tsMASlow["Values"];

MASlowLag1M =

First@tsMASlow["SliceData", DatePlus[Last@tsMASlow["Dates"], {-1, "Month"}]];

(*

==========================⩵===

Download statistics information from Yahoo! Finance and extract

Valuation, Trading, Financial, and Dividend Info

==========================⩵===

*)

querystring =

StringJoin["http://finance.yahoo.com/q/ks?s=", yahooticker, "+Key+Statistics"];

Stats = Last[Import[querystring, "Data"][[2]]];

If[Dimensions[Stats[[1]]] === {},

Valuation = {};

FinancialHighlights = {};,

Valuation = Stats[[1, 1]];

FinancialHighlights = Stats[[1, 2]];];

If[Dimensions[Stats[[2]]] === {},

TradingInfo = {};

High52Week = "N/A";

Low52Week = "N/A";

ShareStatistics = {};

DividendInfo = {},

TradingInfo = Stats[[2, 1]];

High52Week = TradingInfo[[4, 2]];

Low52Week = TradingInfo[[5, 2]];

ShareStatistics = Stats[[2, 2]];

DividendInfo = Stats[[2, 3]];];

(*

==========================⩵===

Download financial statement summary from Yahoo! Finance and

extract Revenues, Net Income information and compute growth rates

==========================⩵===

*)

querystring =

StringJoin["http://finance.yahoo.com/quote/", yahooticker, "/financials"];

Financials = Last@Import[querystring, "Data"][[2]];

IfDimensions[Financials[[2]]] === {} || Dimensions[Stats[[1]]] === {},

Revenue = Table["N/A", 4];

10 StockScreener_1_4.nb

RevenueGrowth3yr = "N/A";,

Revenue = Financials[[2, 2 ;;]];

Revenue = Internal`StringToDouble[#] & /@ Revenue;

RevenueGrowth3yr = Revenue[[1]]  Revenue[[3]]^1  3.0 - 1;;

If[Head[RevenueGrowth3yr] ⩵ Complex, RevenueGrowth3yr = -1];

IfDimensions[Financials[[-1]]] === {} || Dimensions[Stats[[1]]] === {},

NetIncome = Table["N/A", 4];

NetProfitMargin = Table["N/A", 4];

NPMGrowth3yr = "N/A";,

NetIncome = Financials[[-1, 2 ;;]];

NetIncome = Internal`StringToDouble[#] & /@ NetIncome;

NetProfitMargin = NetIncome  Revenue // N;

NPMGrowth3yr = NetProfitMargin[[1]]  NetProfitMargin[[3]]^1  3.0 - 1;;

If[Head[NPMGrowth3yr] ⩵ Complex, NPMGrowth3yr = -1];

(*

==========================⩵===

Download analysis section from Yahoo! Finance and

EPS information and compute growth rates

==========================⩵===

*)

querystring =

StringJoin["http://finance.yahoo.com/quote/", yahooticker, "/analysis"];

Analysis = Last@Import[querystring, "Data"][[2]];

IfDimensions@Analysis === {} || Dimensions[Stats[[1]]] === {},

EPS = Table["N/A", 4];

EPSGrowth3yr = "N/A";,

EarningsEstimates = Analysis[[1]];

RevenueEstimates = Analysis[[2]];

EarningsHistory = Analysis[[3]];

EPSTrend = Analysis[[4]];

EPSRevisions = Analysis[[5]];

GrowthEstimates = Analysis[[6]];

EPS = EarningsHistory[[2]][[2, 2 ;;]];

EPSGrowth3yr = EPS[[1]]  EPS[[3]]^1  3.0 - 1;;

If[Head[EPSGrowth3yr] ⩵ Complex, EPSGrowth3yr = -1];

(*

==========================⩵===

Return results and close function

==========================⩵===

*)

{tsClose, tsMAFast, tsMAMedium, tsMASlow, ClosePrice, Summary, Stats, Valuation,

TradingInfo, FinancialHighlights, ShareStatistics, DividendInfo, MAFast,

MAMedium, MASlow, MASlowLag1M , Low52Week, High52Week, Financials,

Revenue, RevenueGrowth3yr, NetIncome, NetProfitMargin, NPMGrowth3yr,

Analysis, EarningsEstimates, RevenueEstimates, EarningsHistory,

EPSTrend, EPSRevisions, GrowthEstimates, EPS, EPSGrowth3yr}

StockCriteria[CurrentPrice_, MAFastDay_, MAMediumDay_, MASlowDay_,

MASlowDayLag1M_, High52Week_, Low52Week_, EPSGrowth3yr_, RevenueGrowth3yr_,

NPMGrowth3yr_, PctoverLow_: 0.30, PctunderHigh_: 0.25, EPSGrowthRate_: 0.1,

RevenueGrowthRate_: 0.1, NPMGrowthRate_: 0.1] := Module{boolCondition, boolPass},

(*

===========================⩵===

===========================⩵===

StockScreener_1_4.nb 11

StockCriteria function version 1_0 Jan 2019

Set up the criteria to be used for screening:

The current stock price is above both the 150-

day 30-week and the 200-day 40-week moving average price lines.

The 150-day moving average is above the 200-day moving average.

The 200-day moving average line is trending up for at

least 1 month preferably 4–5 months minimum in most cases.

The 50-day 10-week moving average is above both the 150-

day and 200-day moving averages.

The current stock price is trading above the 50-day moving average.

The current stock price is at least 30 percent above its 52-

week low.Many of the best selections will be 100 percent,

300 percent or greater above their 52-week low before they emerge

from a solid consolidation period and mount a large scale advance.

The current stock price is within at least 25 percent of its 52-

week high the closer to a new high the better.

EPS YOY growth+10% last 3 years

Revenue YOY growth+10% last 3 years

Net Profit Margin YOY growth+10% last 3 years

===========================⩵===

===========================⩵==

*)

boolCondition = Table[{}, 10];

boolCondition[[1]] = CurrentPrice > MAMediumDay && CurrentPrice > MASlowDay;

boolCondition[[2]] = MAMediumDay > MASlowDay;

boolCondition[[3]] = MASlowDay > MASlowDayLag1M;

boolCondition[[4]] = MAFastDay > MAMediumDay && MAFastDay > MASlowDay;

boolCondition[[5]] = CurrentPrice > MAFastDay;

IfHead[Low52Week] === Real,

boolCondition[[6]] = CurrentPrice ≥ 1 + PctoverLow * Low52Week;,

boolCondition[[6]] = False;;

IfHead[High52Week] === Real,

boolCondition[[7]] = CurrentPrice ≥ 1 - PctunderHigh * High52Week;,

boolCondition[[7]] = False;;

If[Head[EPSGrowth3yr] === Real,

boolCondition[[8]] = EPSGrowth3yr >= EPSGrowthRate;,

boolCondition[[8]] = False;];

If[Head[RevenueGrowth3yr] === Real,

boolCondition[[9]] = RevenueGrowth3yr >= RevenueGrowthRate;,

boolCondition[[9]] = False;];

If[Head[NPMGrowth3yr] === Real,

boolCondition[[10]] = NPMGrowth3yr >= NPMGrowthRate;,

boolCondition[[10]] = False;];

boolPass = Fold[And, True, boolCondition];

{boolPass, boolCondition}

12 StockScreener_1_4.nb

In[]:= StockScreen[ticker_] :=

Module[{tsClose, tsMAFast, tsMAMedium, tsMASlow, ClosePrice, Summary, Stats,

Valuation, TradingInfo, FinancialHighlights, ShareStatistics, DividendInfo,

MAFast, MAMedium, MASlow, MASlowLag1M , Low52Week, High52Week, Financials,

Revenue, RevenueGrowth3yr, NetIncome, NetProfitMargin, NPMGrowth3yr,

Analysis, EarningsEstimates, RevenueEstimates, EarningsHistory, EPSTrend,

EPSRevisions, GrowthEstimates, EPS, EPSGrowth3yr, boolPass, boolCondition},

{tsClose, tsMAFast, tsMAMedium, tsMASlow, ClosePrice, Summary, Stats, Valuation,

TradingInfo, FinancialHighlights, ShareStatistics, DividendInfo, MAFast,

MAMedium, MASlow, MASlowLag1M , Low52Week, High52Week, Financials,

Revenue, RevenueGrowth3yr, NetIncome, NetProfitMargin, NPMGrowth3yr,

Analysis, EarningsEstimates, RevenueEstimates, EarningsHistory, EPSTrend,

EPSRevisions, GrowthEstimates, EPS, EPSGrowth3yr} = StockData[ticker];

{boolPass, boolCondition} =

StockCriteria[ClosePrice, MAFast, MAMedium, MASlow, MASlowLag1M,

High52Week, Low52Week, EPSGrowth3yr, RevenueGrowth3yr, NPMGrowth3yr];

{boolPass, boolCondition}]

In[]:= YahooSymbol[symbols_] := Module[{result, newsymbols, exchange, tickers},

result = StringSplit[symbols, ":"];

If[Dimensions@symbols === {},

exchange = First@result;

tickers = result[[2]];,

exchange = result[[1, 1]];

tickers = result[[;; , 2]];];

If[exchange === "NYSE" || exchange === "NASDAQ",

newsymbols = tickers;,

If[Dimensions@symbols === {},

newsymbols = StringJoin[tickers, ".", exchange];,

newsymbols = StringJoin[#, ".", exchange] & /@ tickers;];];

newsymbols]

In[]:= ConditionTableHeadings = {{Style["Overall Result", Bold],

"Current price is above 150 day MA and 200 day moving averages",

"150-day moving average is above the 200-day moving average",

"200-day moving average line is trending up for at least 1 month",

"50-day moving average is above both the 150-day and 200-day moving averages",

"Current stock price is trading above the 50-day moving average",

"Current stock price is at least 30 percent above its 52-week low",

"Current stock price is within at least 25 percent of its 52-week high",

"EPS YOY growth +10% (last 3 years)",

"Revenue YOY growth +10% (last 3 years)",

"Net Profit Margin YOY growth +10% (last 3 years)"}, None};

PrintTestResult :=

TableForm[Flatten@StockCriteria[ClosePrice, MAFast, MAMedium, MASlow, MASlowLag1M,

High52Week, Low52Week, EPSGrowth3yr, RevenueGrowth3yr, NPMGrowth3yr],

TableHeadings -> ConditionTableHeadings];

StockScreener_1_4.nb 13

