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1. Introduction
Momentum and mean reversion are two fundamental forces that shape the dynamics of asset 
prices in financial markets. Traditional financial models often struggle to accurately capture these 

complex behaviors, typically focusing on either aspect in isolation. This paper introduces an innova-
tive two-factor model that bridges this gap, offering a comprehensive framework that effectively 

incorporates both momentum and mean reversion effects within the stochastic processes govern-
ing financial assets.

The proposed model represents a significant advancement in financial econometrics, providing a 

nuanced lens through which the multifaceted nature of market behaviors can be understood and 

predicted. The motivation for this model stems from the empirical observation that financial 
markets exhibit distinct phases of persistent trends (momentum) and reversion to historical means 

or intrinsic values (mean reversion). Capturing this duality within a single framework has been a 

long-standing challenge in financial modeling, which this research aims to address.

The two-factor model innovatively combines a drift component, embodying the momentum effect, 
with a mean-reverting process, encapsulating the tendency of prices to revert to a long-term 

equilibrium. The first factor, dμ(t), represents the long-term trend or drift of an asset’s price, inte-
grating the momentum effect through a constant drift parameter θ. This component reflects the 

underlying momentum driven by broader market forces or fundamental changes. The second 

factor, dθt, models the short-term deviations from the drift through its mean-reversion speed κ, 
capturing the asset’s propensity to revert to its mean following short-term fluctuations. These 

components are modulated by their respective volatilities (σμ, σθ) and driven by correlated Wiener 

processes, enabling the model to reflect the real-world interplay between momentum and mean 

reversion.

To demonstrate the model’s applicability and effectiveness, this research applies the two-factor 
model to daily returns data of Coca-Cola (KO) and PepsiCo (PEP) over a twenty-year period, illustrat-
ing its potential for informing pairs trading strategies. The parameter estimation employs a sophisti-
cated maximum likelihood estimation (MLE) technique, tailored to accommodate the intricacies of 
fitting a two-factor model to empirical data, ensuring both accuracy and adaptability in evolving 

market conditions.



This paper contributes a novel perspective to the quantitative finance literature by presenting a 

model that integrates key market behaviors—momentum and mean reversion—within a unified 

analytical framework. By doing so, it offers profound insights into asset price dynamics, enhancing 

the predictive capabilities of financial models and informing more effective trading strategies. The 

findings have significant implications for both academic research and practical applications in 

financial markets, positioning this model as a pivotal tool for investors, analysts, and policymakers.

The remainder of this paper is structured as follows: Section 2 provides a comprehensive literature 

review, highlighting the existing research on momentum and mean reversion in financial markets. 
Section 3 introduces the proposed two-factor model, detailing its mathematical formulation and 

theoretical underpinnings. Section 4 describes the data and methodology employed in the empiri-
cal analysis, including the MLE approach for parameter estimation. Section 5 presents the results 

and discusses the implications of the model for pairs trading strategies. Finally, Section 6 con-
cludes the paper, summarizing the key findings and outlining potential avenues for future research.

2. Literature Review
The development of two - factor models in finance has been largely motivated by the need to 

capture the complex dynamics of asset prices, particularly in the context of commodity and energy 

markets . This literature review focuses on key contributions that have shaped the understanding 

and application of two - factor models in these domains.  

Longstaff and Schwartz (1992) develop a two-factor general equilibrium model for interest rate 

volatility and the term structure. Their model incorporates both a short-term and a long-term 

factor, providing a framework for analyzing the behavior of interest rates across different maturi-
ties.
One of the seminal works in this area is the paper by Schwartz (1997), which introduces a two - 
factor model for commodity prices . The model incorporates both short - term deviations and long - 
term equilibrium dynamics, providing a framework for analyzing the stochastic behavior of com-
modity prices . Schwartz demonstrates the model' s implications for valuation and hedging, high-
lighting its practical relevance for market participants.
Building upon this foundation, Schwartz and Smith (2000) propose a two - factor model that 
explicitly separates short - term variations from long - term dynamics in commodity prices . Their 
model includes a mean - reverting factor for short - term deviations and a Gaussian factor for long - 
term equilibrium prices.
This separation allows for a more nuanced analysis of commodity price behavior and has been 

widely influential in subsequent research. 
Ribeiro and Hodges (2004) propose a two - factor model specifically designed for commodity prices 

and futures valuation. Their model incorporates a stochastic convenience yield, which represents 

the benefit of holding the physical commodity, and a stochastic interest rate. The authors show 

that their model can effectively capture the dynamics of commodity futures prices and provide 

insights into the valuation of futures contracts. 
Casassus and Collin - Dufresne (2005) extend the two - factor framework by introducing a stochas-
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tic convenience yield implied from commodity futures and interest rates . Their model allows for a 

time - varying convenience yield, which is a key determinant of commodity futures prices. The 

authors demonstrate the model' s ability to capture the joint dynamics of commodity spot prices, 
futures prices, and interest rates, providing a comprehensive framework for analyzing commodity 

markets. 

In equity markets, Adrian and Rosenberg (2008) develop a two-factor model for stock returns and 

volatility, where the factors represent the short-run and long-run components of market risk. They 

show that this decomposition of market risk helps explain the time-series and cross-sectional
variation in stock returns and has implications for asset pricing and risk management.

These papers represent key milestones in the development and application of two - factor models 

in commodity, equity and energy markets. They highlight the importance of capturing both short - 
term variations and long - term dynamics, as well as incorporating market - specific factors such as 

convenience yields and interest rates  While primarily focused on commodities and energy, the 

insights gained from these models have laid the groundwork for the extension of two - factor 
approaches to other financial assets, including equities. The proposed two - factor equity model 
aims to build upon this rich literature by adapting and extending the two - factor framework to 

capture the unique characteristics of equity markets. By incorporating a drift component for 
momentum and a mean - reverting component for long - term equilibrium dynamics, the proposed 

model seeks to provide a comprehensive framework for analyzing equity price behavior, drawing 

inspiration from the seminal works in commodity and energy markets .

3. Formulation of the Two - Factor Model
The model is defined by a set of SDEs that describe the evolution of an asset’ s price, integrating 

both the long-term drift and the short-term mean-reverting behavior, each subjected to random 

shocks : 

Long - term Drift Component (θ) : 
The long - term drift or trend in the asset’ s price is modeled as : 

dμt = θt dt + σμ d Wt (1)

◼ dμt represents the change in the long - term component of the asset’ s price. 

◼ θt is the time-varying drift parameter, indicating the direction and magnitude of the trend.

◼ σμ  denotes the volatility associated with the long - term drift. 

◼ dWt  is a Wiener process representing the random fluctuations impacting the long - term trend. 

Short - term Mean - Reverting Component : 

The short - termdeviations from the long - term trend are captured by amean - reverting process :

dθt = −κθt − θ  dt + σθ d Zt (2)
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◼ dθt  represents the change in the short - term deviation from the long - term mean.

◼ κ is the speed of mean reversion, indicating how quickly deviations from the long - term trend 

are corrected.

◼ σθ denotes the volatility associated with the short - term deviations.

◼ d Zt is another Wiener process, independent from d Wt, representing the random shocks to the 

short-term deviations.

 Correlation Between Stochastic Processes

The model allows for a correlation between the two stochastic processes dWt and d Zt denoted by 

ρ. This term captures the interdependence between the long - term and short - term dynamics of 
asset prices.

 Implications of the Model

The inclusion of both stochastic differential equations in the model allows for a dynamic representa-
tion of asset prices, accommodating mean-reverting fluctuations around a long - term trend while 

accounting for the market' s inherent uncertainty and noise. The model' s structure facilitates the 

analysis of how fundamental trends and market sentiment drive asset prices over time, alongside 

the impact of short - term market volatilities and corrections .

4. Positioning within the Landscape of Financial Models
To better understand the significance of the proposed two-factor model, it is useful to compare it 
with well-established financial models such as the Geometric Brownian Motion (GBM) model and 

the Ornstein-Uhlenbeck (O-U) model. This comparison highlights the unique features of the two-
factor model and its potential to bridge the gap between trend-following and mean-reverting 

behaviors in asset price dynamics.

The classical GBM model, defined as dSt = μSt dt + σSt dBt, shares some fundamental characteris-
tics with the two-factor model. Both models incorporate stochastic processes to capture the 

inherent randomness in asset price movements. The drift term (μ) in the GBM model is conceptu-
ally similar to the long-term component (θ) in the two-factor model, representing the expected 

return or trend of the asset over time. However, the GBM model assumes that prices follow a log-
normal distribution without reverting to a long-term mean, making it more suitable for modeling 

assets that exhibit indefinite growth, such as stock prices in the long run.

In contrast, the O-U model, defined as dXt = κ(θ - Xt )dt + σdBt, is a mean-reverting stochastic 

process that focuses on the tendency of a process to revert to a mean level (θ) over time, with a 

speed of mean reversion (κ). The mean-reverting component of the two-factor model shares this 

fundamental characteristic with the O-U model. However, the O-U model is a single-factor model 
that solely addresses mean reversion, while the two-factor model combines both mean reversion 

and a separate drift component, offering greater flexibility in modeling complex asset price behav-
iors.
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The two-factor model’s ability to capture both short-term deviations and long-term trends sets it 
apart from models that focus on either trend-following or mean-reverting behavior in isolation. 
This dual approach allows for a more comprehensive analysis of asset price dynamics, making it 
applicable to a wide range of financial instruments, including stocks, commodities, and currencies.

Other relevant models, such as the Vasicek model for interest rates and the Heston model for 
stochastic volatility, introduce additional layers of complexity in financial modeling. While the 

Vasicek model is similar to the O-U model in its focus on mean reversion, it is specifically designed 

for interest rate dynamics. The Heston model, on the other hand, incorporates stochastic volatility 

into option pricing, differing from the fixed volatility assumption in GBM and the simple mean-
reversion in the O-U model.  The Schwartz two-factor model, introduced by Eduardo Schwartz in 

1997, is a well-established model in the field of commodity pricing and has been widely applied to 

various financial markets. However, in the Schwartz model, the two factors represent the short-
term deviation from the long-term equilibrium price and the long-term equilibrium price itself. The 

equity two-factor model, on the other hand, interprets the two factors as a drift component captur-
ing momentum and a mean-reverting component capturing the tendency to revert to a long-term 

mean.

The two-factor model’s unique contribution lies in its ability to integrate both momentum and 

mean reversion within a single framework. By combining the long-term drift component (θ) with 

the mean-reverting component (κ), the model provides a more nuanced perspective on asset price 

dynamics, capturing the complex interplay between trend-following and mean-reverting behaviors.

5. Model Estimation
The basic procedure for estimating the model is, firstly, to convert the continuous-time SDEs to a 

discrete approximation using a numerical scheme such as Euler-Maruyama or Milstein. This step is 

crucial for practical implementation since it allows for the use of observed data in discrete time 

intervals for parameter estimation and model testing.  The next step involves deriving the log-
likelihood function based on the discretized model under the assumption of Normality.  Finally, 
With the log-likelihood function in hand, use numerical optimization techniques to find the set of 
parameters (θ,  σθ, κ, σχ and ρ) that maximize this function. This step is computationally intensive 

and requires careful selection of optimization algorithms to ensure convergence and accuracy.

Discretization and Log - Likelihood

The Euler-Maruyama method offers a straightforward yet powerful tool for approximating and 

analyzing complex dynamics described by SDEs, enabling the practical application of sophisticated 

models like the proposed two - factor framework in various financial contexts.

We discretize the SDEs using the Euler-Maruyama method for a time step from t to t + Δt, as follows:

μt+Δt = μt + θt Δt +σμ ΔWt (3)
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◼ μt+Δt and μtrepresent the values of the μ components at times  t+Δt and t respectively.

◼ ΔWt is the increment of the Wiener process Wtover the interval Δt, typically simulated as Δt  × 

N(0,1), where N(0,1) is a standard normal random variable.

Similarly, for dθt, the approximation over the same time step is:

θt+Δt = θt − κ θt − θ Δt +σθ ΔZt (4)

◼ θt+Δt and θtrepresent the values of the θ components at times  t+Δt and t respectively.

◼ ΔZt is the increment of the Wiener process Ztover the interval Δt, typically simulated as Δt  × 

N(0,1),  adjusted for correlation ρ with ΔWt.

◼ The correlation between ΔZtand ΔWt is typically accomplished using Cholesky decomposition.

These equations provide a basis for simulating the paths of μt and θt

over discrete time intervals . By iterating these equations over a sequence of time steps, you can 

construct simulated trajectories of the processes, which are essential for empirical analysis and 

application of the model to financial data.

¶Derivation of the Log-Likelihood Function

To derive the log - likelihood function, we first note the key assumptions:

◼ The increments Δμt and Δθtare normally distributed due to the properties of Wiener processes 

and the central limit theorem for sufficiently small dt.

◼ We assume the observational data comes in the form of discrete time series, where we observe 

the outcomes that are thought to be generated by the underlying processes described by our 
model.

Given these assumptions, the likelihood of observing a specific set of data points, given our model 
parameters (θ,  σμ, κ, σθ and ρ), can be described by the product of the probabilities of each 

observed increment, under the normal distribution assumption.

Let YTtrepresent the observed return at time t, which could be modeled as a function of Δμt and 

Δθtor directly related to one of these components. The likelihood function 

L for observations {Yt} over N time steps given the model parameters is:

L θ, σμ, κ, σθ, ρ {ΔRt} = 

t=1

N

f ΔRt; θ, σμ, κ, σθ, ρ (5)

where  f is the probability density function ofRt given the parameters.
Assuming normality, and that Yt directly reflects μt and θt, f might be expressed in terms of the 

normal density function with mean and variance derived from the model’s parameters and the 

specific discretization scheme.

The log - likelihood l is the natural logarithm of L, which turns the product into a sum:

l θ, σμ, κ, σθ, ρ {ΔRt} = 

t=1

N

log f ΔRt; θ, σμ, κ, σθ, ρ (6)

In order to more fully define the log-likelihood and facilitate its estimate, we make the following 

assumptions:
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◼ Log-Returns Relation: 
The observed log-returns over a time interval Δt are primarily influenced by the long-term drift 

component μt and exhibit mean-reversion as captured by the short-term component θt.  The 

total log-return Rt from t to t+Δt can then be approximated as a combination of contributions 

from both factors.

◼ Expected Log-Return: 
The expected log-return over Δt is directly proportional to the drift component, adjusted by a 

factor that represents the average expected contribution from the mean-reverting component. 
For simplification, it is assumed this contribution is a function of the difference between the 

current mean-reverting level and the long-term mean, scaled by the mean-reversion speed κ.

◼ Variance of Log-Returns: 
The variance in log-returns over Δt incorporates contributions from both the drift and mean-
reverting components, adjusted for their correlation. The variance reflects the combined effects 

of volatilities σθ  and σθand the correlation ρ between the processes and, for a single time step, 
can be expressed as:

Var (ΔRt) = σμ
2 + σθ

2 + 2 ρσμ σθ Δt (7)

◼ When deriving the log-likelihood function based on this adjusted variance, consider that each 

observed log-return increment, ΔRt = Rt+Δt - Rt where Rt is the log-return at time t, follows a 

normal distribution with mean μt Δt (assuming the mean return rate for the timestep) and 

variance 

Var(ΔRt ) as defined above.

The log-likelihood of observing a series of log-return increments given the model parameters can 

be expressed as the sum of the log-probabilities of observing each increment under this normal 
distribution assumption:

l θ, σμ, κ, σθ, ρ {ΔRt} = −
1

2


t=1

N

log 2Var (ΔRt))+
(ΔRt − μt Δt)2

Var (ΔRt)
 (8)

Where :

◼ ΔRt is the observed log-return increment from t to t+Δt.

◼ μt Δt is the expected log-return increment based on the model.

◼ Var ΔRtis the variance of the log-return increment as derived above.

◼ The model parameters θ, σμ, κ, σθ, ρ) influence μt, Var ΔRt and thus the likelihood of the 

observed data.

Two-Factor Model of Stock Returns ver_1_1.nb     7



7.References
Adrian, Tobias, and Rosenberg, Joshua. (2008). 
Stock returns and volatility: Pricing the short-run and long-run components of market risk. 
The Journal of Finance, 63(6), 2997-3030. 

Casassus, Jaime, and Collin - Dufresne, Pierre  (2005). 
Stochastic convenience yield implied from commodity futures and interest rates. 
The Journal of Finance, 60 (5), 2283 - 2331. 
  

 Longstaff, Francis A., and Schwartz, Eduardo S. (1992). 
 Interest rate volatility and the term structure: A two-factor general equilibrium model. 
 The Journal of Finance, 47(4), 1259-1282. 

Ribeiro, Diogo R., and Hodges, Stewart D. (2004). 
A two-factor model for commodity prices and futures valuation. 
EFMA 2004 Basel Meetings Paper. 

Schwartz, Eduardo S. (1997). 
The stochastic behavior of commodity prices : Implications for valuation and hedging. 
 The Journal of Finance, 52 (3),  923 - 973. 

Schwartz, Eduardo S., and Smith, James E. (2000). 
Short - term variations and long -  term dynamics in commodity prices. 
Management Science, 46 (7), 893 - 911. 

8     Two-Factor Model of Stock Returns ver_1_1.nb



Wolfram Language Code
(*Dynamics of θ(t) and μ(t) using the Euler-Maruyama method*)
NextTheta[theta_, thetaBar_, kappa_, sigmaTheta_, deltaZ_, dt_] :=

theta - kappa * (theta - thetaBar) * dt + sigmaTheta * deltaZ;
NextMu[mu_, theta_, sigmaMu_, deltaW_, dt_] := mu + theta * dt + sigmaMu * deltaW;

LogLikelihoodFunction[params_List,
observedLogReturns_, dt_, initialTheta_, initialMu_] := Module[
{theta = initialTheta, mu = initialMu, thetaBar, kappa, sigmaTheta, sigmaMu,
rho, n = Length[observedLogReturns], logLikelihood = 0, deltaWs, deltaZs,
totalVariance}, {thetaBar, kappa, sigmaTheta, sigmaMu, rho} = params;

If[And[sigmaTheta > 0, sigmaMu > 0, -1 < rho < 1],
(*Generate correlated Wiener process increments*)
{deltaWs, deltaZs} = Transpose[RandomVariate[MultinormalDistribution[{0, 0},

{{dt, rho Sqrt[dt] Sqrt[dt]}, {rho Sqrt[dt] Sqrt[dt], dt}}], n - 1]];
(*Iterate over observed log-returns*)For[t = 1, t < n, t++,
(*Update theta and mu for the next time step using model dynamics*)
theta = NextTheta[theta, thetaBar, kappa, sigmaTheta, deltaZs〚t〛, dt];
mu = NextMu[mu, theta, sigmaMu, deltaWs〚t〛, dt];
(*Calculate total variance for the timestep*)
totalVariance = (sigmaMu^2 + sigmaTheta^2 + 2 rho sigmaMu sigmaTheta) dt;
(*Accumulate log-likelihood using the direct log-PDF computation*)
logLikelihood += -0.5 Log[2 Pi totalVariance] -

((observedLogReturns〚t + 1〛 - mu)^2 / (2 totalVariance));];
-logLikelihood, (*Return the negative log-likelihood for optimization*)
Infinity (*Handle invalid parameter values*)]];
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KO = QuantityMagnitude@
FinancialData["KO", "Close", {{2010, 1, 1}, {2014, 12, 31}}]

TimeSeries Time: 04 Jan 2010 to 31 Dec 2014
Data points: 1258



KOreturns = Prepend[Differences@Log[KO["Values"]], 0];

dt = 1 / 252;
observedLogReturns = KOreturns;

(*Adjust the initial conditions based on
domain knowledge or descriptive analysis of the data*)

initialTheta = Mean[observedLogReturns];
initialMu = observedLogReturns〚1〛;

(*Refine initial parameter guesses based on reasonable expectations*)
initialParamsGuess = {0.001, -0.05, 0.01, 0.02, 0.01}; (*Example adjustments*)

(*Optimization constraints:Adjust based on model requirements*)
constraints = {0 < sigmaTheta ≤ 1, 0 < sigmaMu ≤ 1, -1 < rho < 1, kappa < 0};

(*Perform optimization with refined parameters and constraints*)
optimizedResult =

NMinimize[{LogLikelihoodFunction[{thetaBar, kappa, sigmaTheta, sigmaMu, rho},
observedLogReturns, dt, initialTheta, initialMu], Sequence @@ constraints},

{thetaBar, kappa, sigmaTheta, sigmaMu, rho},
Method  "DifferentialEvolution"];

(*Display optimized parameters*)
optimizedResult
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