Conditional Value-at-Risk Models

One of the most widely used risk measures is the Value-at-Risk, defined as the expected loss on a
portfolio at a specified confidence level. In other words, VaR is a percentile of a loss distribution.

But despite its popularity VaR suffers from well-known limitations: its tendency to underestimate the risk
in the (left) tail of the loss distribution and its failure to capture the dynamics of correlation between
portfolio components or nonlinearities in the risk characteristics of the underlying assets.

One method of seeking to address these shortcomings is discussed in a previous post Copulas in Risk
Management. Another approach known as Conditional Value at Risk (CVaR), which seeks to focus on
tail risk, is the subject of this post.

VaR is the lower a-percentile of X, a random variable representing the loss distribution:
VaRy(X) = min{x | Fx(x) 2o}

CVaR is an alternative percentile measure of risk with conditional interpretation — it is the conditional
expectation of the loss that exceeds VaR:

CVaRy(X) = E[X | X = VaRq(X)].

In other words, it is the expected loss, given that the loss exceeds the VaR limit VaR(X).

Histogram[RandomVariate[NormalDistribution[0.01, 0.05], 10000], ImageSize -» Medium]
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The Gaussian Model

In a Gaussian framework the VaR is defined by:

VaRnormal = Refine[InverseCDF[NormalDistribution[u, o], al, @ <a< 1] // Simplify

u-+2 olnverseErfc[2a]

While the CVaR is given by :
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CVaRnormal = Expectation[x ) x > VaRnormal, x ~ NormalDistribution[u, o]] // Simplify

2u-2apu+ e-InverseErfc(2 a2 | 2 o
JT

2-2a

Both VaR and CVaR are nonlinear functions of the confidence level a, rising to a maximum as a
approaches 1. Since it measures risk conditionally, in the tail, CVaR always exceeds VaR, as illustrated
in the chart below.

Plot[{VaRnormal /. {u-»0.01, - 0.05}, CVaRnormal /. {u-»0.01, c-» 0.05}},
{a, 0.5, 1}, PlotLegends » {"VaR Normal", "CVaR Normal"}, Filling - {1- {2}}]
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Non-Gaussian Models

The normal VaR model, and hence also the CVaR model, tends to underestimate the risk of loss, due to
the heaviness of the tails of the loss distribution, which are typically “fatter” than modeled in a Gaussian

framework. One approach to addressing this shortcoming is to substitute an alternative distribution that
allows for greater weight in the tails.

The Student-T distribution is an obvious choice, but while this yields a tractable formula for the VaR,
the CVaR has to be evaluated numerically:

VaRstudent =
Refine[InverseCDF [StudentTDistribution[u, o, vl, al, @ <a<1/2] // Simplify

1

u—\/70 -1+

InverseBetaRegularized([2a, ¥, %]
2 2

CVaRstudent =
Expectation[x ) x > VaRstudent, x ~ StudentTDistribution[u, o, v]] // Simplify

1
Expectation|x | x++/v o [-1+ > U,

InverseBetaRegularized[2a, ¥, 7]

x &~ StudentTDistribution[u, o, v]|
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The Logistic distribution, another heavy-tailed distribution, yields tractable analytic results for both VaR
and CVaR:

VaRlogistic = Refine[InverseCDF[LogisticDistribution[u, o], al, © <a< 1] // Simplify

1
u—oLog[—l+ —]
o

CVaRlogistic =
Expectation[x D x > VaRlogistic, x &~ LogisticDistribution[u, o]] // Simplify

U*O(quoLOg[i] +aolog[l-a] +O(0Log[i}

-l+a

Plot[{VaRlogistic /. {u->0.01, 0- 0.05}, CVaRlogistic /. {u-»0.01, o- 0.05}},
{a, 6.5, 1}, PlotLegends » {"VaR Logistic", "CVaR Logistic"}, Filling-> {1 - {2}}]
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CVaR Logistic

The VaR estimated for a Logistic loss distribution exceeds that for the Gaussian distribution due to its
“fat tails”. The same is also true for the CVaR.

Histogram[ {RandomVariate[NormalDistribution[0.01, 6.05], 100007,
RandomVariate[LogisticDistribution[0.01, 0.05], 10000]},
ChartLegends -» {"Normal", "Logistic"}, ImageSize -» Medium]

1500

1000; 1
r — [] Normal
[ Logistic

500 -




4 | Var, CVaR and Heavy Tails.nb

Plot[{VaRnormal /. {u-»0.01, o- 0.05}, VaRlogistic /. {#->0.01, 0-0.05}},
{a, 6.5, 1}, PlotLegends » {"VaR Normal", "VaR Logistic"}, Filling - {1- {2}}]
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Plot[{CVaRnormal /. {u->0.01, o0- 0.05}, CVaRlogistic /. {u->0.01, 0 0.05}},
{a, 0.5, 1}, PlotLegends » {"CVaR Normal", "CVaR Logistic"}, Filling - {1- {2}}]
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Mixed Density Models

An alternative approach to defining a heavy-tailed loss distribution is to use a mixture of densities. In
this framework the loss function follows a normal density, but one in which the the second moment (the
volatility) is stochastic. Specifically, we define a mixture distribution for the loss function along the lines
of:

distnormalrayleigh = ParameterMixtureDistribution]
NormalDistribution[u, o], o~ RayleighDistribution[A]]

LaplaceDistribution[u, 2]

As with the Non-Gaussian loss function, the mixture distribution has heavier tails than the Gaussian
distribution. The mixed density model arguably provides a more realistic fit to the observed empirical
data, since it matches the normal density more closely around the mean. Empirically, we tend to find
financial assets are more likely to produce close to the mean return, or returns of much larger magni-
tude, than predicted by the normal distribution.
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Histogram[{RandomVariate[NormalDistribution[0.01, 6.05], 100007,
RandomVariate[LaplaceDistribution[0.01, 0.05], 10000]},
ChartLegends -» {"Normal", "Normal-Rayleigh"}, ImageSize » Medium]
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VaRrayleigh =

Reﬁne[InverseCDF[Lap'LaceD'istr'ibut'ion[u, Al, al, 1/2 <ac< 1] // Simplify
u-AlLog[2-2a]
CVaRrayleigh =

Ref‘ine[Expectat‘ion[x D x > VaRrayleigh, x ~ LaplaceDistribution[u, A]1,
A>08&% 1/2<a<1] //Simplify

A+u-AlLog[2-2a]

Plot[{VaRrayleigh /. {u->0.01, A - 0.05}, CVaRrayleigh /. {u->0.01, A - 0.05}},
{a, 0.5, 1}, PlotLegends - {"VaR Normal-Rayleigh", "CVaR Normal-Rayleigh"},
Filling » {1 - {2}}]
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Again, both the VaR and CVaR are elevated under the mixed density framework, compared to the
Gaussian model.
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Plot[{VaRnormal /. {u->0.01, 0- 0.05}, VaRrayleigh /. {u->0.01, x> 0.05}}, {a, 0.5,
1}, PlotLegends -» {"VaR Normal", "VaR Normal-Rayleigh"}, Filling - {1 - {2}}]
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Plot[{CVaRnormal /. {u->0.01, o0- 0.05}, CVaRrayleigh /. {u->0.01, x> 0.05}},
{a, 0.5, 1}, PlotLegends -» {"CVaR Normal", "CVaR Normal-Rayleigh"},
Filling » {1 - {2}}]
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Application to Time Series Models

We can apply the concepts of VaR and CVaR to stochastic processes and thereby assess how the
riskiness of an investment asset (or portfolio of assets) fluctuates over time.
We will use the daily returns in the S&P 500 index as an illustration of the methodology.

SP500returns =
TimeSeriesResample@TimeSeries[FinancialData["AGSPC", "Return", {2015, 01, 05}]]

Ti S . Time: 06 Jan 2015 to 02 Feb 2017
mmeseries { Data points: 759 ]



Var, CVaR and Heavy Tails.nb | 7

DateListPlot[SP500returns, PlotLabel -» "S&P500 Index Daily Return'"]
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There is clear evidence of conditional heteroskedasticity in the process:

realizedvolatility = TimeSeriesResample[

2016

|
2017

MovingMap[StandardDeviation, SP500returns, Quantity[2, "Days"]]]

TimeSeries]|

Time: 08 Jan 2015 to 02 Feb 2017
Data points: 757

DateListPlot[realizedvolatility, PlotStyle -» Magenta,
PlotLabel -» "SP500 Index Return Volatility"]
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Statistical portmanteau tests show significant autocorrelations in the returns process:
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lag = 50;
acf = CorrelationFunction[SP500returns, {lag}];
level = 2/(Sqrt[SPSOOreturns["PathLength"]]);
ListPlot[acf, Filling » Axis, Epilog -
{Dashed, Line[{{0, level}, {lag, level}}], Line[{{0, -level}, {lag, -level}}]1}]
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AutocorrelationTest[SP500returns, Automatic, {"TestDataTable", Al1l}]

Statistic P-Value
Box-Pierce |107.349 3.25491x107%°
Ljung-Box |107.868 2.54134x 1072

GARCH Model
To address the conditional heteroskedasticity issue, we fit a GARCH model to the returns process:

tsm = TimeSeriesModelFit[SP500returns,
"GARCH", ProcessEstimator -> "MaximumConditionalLikelihood"]

TimeSeriesModel| gﬂgﬁ?ﬁ?CH ]

tsm["ParameterTable"]

Estimate Standard Error t-Statistic P-Value
ay | 0.440072 0.0414096 10.6273 5.49461x1072°
B1 10.313722 0.0598361 5.24301 1.02535x1077

The residuals from the fitted GARCH(1,1) model appear well-behaved and there is no evidence of
significant patterning in the autocorrelations:
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GraphicsRow[{tsm["ACFPlot"], tsm["PACFPlot"]}, ImageSize » Full]
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AutocorrelationTest[tsm["FitResiduals'"], Automatic, {"TestDataTable", All}]

Statistic P-Value
Box-Pierce | 10.1936 0.177864
Ljung-Box |10.2892 0.172769

GARCH-VaR and GARCH-CVaR

In a GARCH(1,1) process with parameters {k, a, 5} the conditional variance is given by:

0% =K +ax2, +Bo%

In this case the parameter estimates for the SP500 GARCH model are:

parameters = List@e tsm["BestFit"]
{0.0000173108, {0.440139}, {0.313749}}

Using this result we can derive the expressions for the GARCH-VaR and GARCH-CVaR risk metrics in

the Gaussian framework, as follows:

VaRnormalGARCH = VaRnormal /.

{u->0, o-» Sqrt[parameters[[1]] + parameters[[2, 1]] x*2 + parameters[[3, 1]] y"*2]}

-2 \/0.0000173108 +0.440139 x? + 0.313749 y2 InverseErfc[2a]

CVaRnormalGARCH = CVaRnormal /.

{u->0, o-» Sqrt[parameters[[1l]] + parameters[[2, 1]] x*2 + parameters[[3, 1]1] y"2]}

1
2-2a

[ 2
e Inversebrfe(2a]? | = \/0.0000173108 +0.440139 x? + 0.313749 y?
s

We now combine the returns and volatility series and derive the realized daily VaR and CVaR for the

S&P500 series:

returnsvol = TimeSeriesThread[QuantityMagnitude, {SP500returns, realizedvolatility}]

Time: 06 Jan 2015 to 02 Feb 2017

TimeSeries| Data points: 759
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dailyVaRnormalGARCH =
MovingMap [VaRnormalGARCH /. {a » 0.95, x » First[#], y -» Last[#]} &, returnsvol, 2];
dailyCVaRnormalGARCH = MovingMap[
CVaRnormalGARCH /. {x -» First[#], y » Last[#], a » 0.95} &, returnsvol, 2];

DateListPlot[{SP500returns, dailyVaRnormalGARCH["PathComponent", 17,
dailyCVaRnormalGARCH["PathComponent", 11},
PlotStyle » {Blue, Magenta, Orange}, PlotLegends » {"Return", "VaR", "CVaR"},
PlotLabel » "S&P500 Index Normal-GARCH Model VaR & CVaR ", ImageSize -» Medium]
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Heavy-Tailed GARCH-VaR and GARCH CVaR

We can just as easily estimate VaR and CVaR in a non-Gaussian framework. For example, here are the
comparable plots using the Logistic framework. Note that the VaR and CVaR estimates are almost
double the size of the Gaussian model estimates.

VaRlogisticGARCH = VaRlogistic /.
{u->0, o-» Sqrt[parameters[[1l]] + parameters[[2, 1]] x*2 + parameters[[3, 1]1] y"2]}

1
~/0.0000173108 + 0.440139 x? + 0.313749 y? Log [-1+ ]
(04

CVaRlogisticGARCH = CVaRlogistic /.
{u->0, o-» Sqrt[parameters[[1l]] + parameters[[2, 1]] x*2 + parameters[[3, 1]1] y"2]}

1 ] )

\/0.0000173108 + 0.440139 x? + 0.313749 y? Log|

-l+a l-«

\/0.0000173108 +0.440139 x2+0.313749y? alog[l-a] +

1
\/0.0000173108 + 0.440139 x2 + 0.313749 y? « Log| -]
(04

dailyVaRlogisticGARCH = MovingMap [

VaRlogisticGARCH /. {a - 0.95, x » First[#], y » Last[#]} &, returnsvol, 2];
dailyCVaRlogisticGARCH = MovingMap[

CVaRlogisticGARCH /. {x » First[#], y » Last[#], a » 0.95} &, returnsvol, 2];
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DateListPlot[{SP500returns, dailyVaRlogisticGARCH["PathComponent", 1],
dailyCVaRlogisticGARCH["PathComponent", 1]},
PlotStyle » {Blue, Magenta, Orange}, PlotLegends » {"Return", "VaR", "CVaR"},
PlotLabel -» "S&P500 Index Logistic-GARCH Model VaR & CVaR ", ImageSize -» Medium]
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Conclusion

Rather than explicitly modeling the correlation between portfolio assets as a basis for assessing tail risk,
as in the copula approach, Conditional Value at Risk focuses on the tail of the loss distribution. It is
straightforward to extend the concept beyond the basic Gaussian framework to model the effect of
heavy tails using either a suitable non-Gaussian loss distribution, or a mixture of distributions.

Finally, we have demonstrated how the concept of heavy-tailed Conditional Value at Risk can be com-
bined with non-linear time series models such as GARCH to create a flexible and effective risk manage-
ment tool.



