
2.2 Why Statistical Arbitrage Trades Break Down

The way a pairs trade is supposed to work is that a trade entry is signaled by a significant divergence in the

spread between the prices of a correlated pair of stocks. The higher value stock is sold while the lower value

stock is purchased, with various schemes used to set the hedge ratio (matching dollar value, or beta-neutral, for

example). As the spread begins to converge, the higher value stock declines relative to the lower value stock,

yielding a profit on the trade. The trade is exited when the spread converges to some specified level, typically a

(lower) multiple of its standard deviation.

One of the risks of statistical arbitrage strategies is that individual pairs trades break down quite frequently.

Even in a successful trade the spread will often continue to diverge before ultimately converging to produce a

overall profit. But sometimes the trade breaks down altogether - the spread continues to diverge until the mark-

to-market losses force the trader to unwind the position.

The risk of breakdown in an individual pairs trade is mitigated by trading a large portfolio of pairs, together with

sensible stop-loss limits and risk management protocols. But the losses on pairs trades that break down can be

painful, especially in periods when several pairs diverge at the same time.

In this section our aim is to understand why this happens and what can be done to mitigate the risk.

2.2.1 Example: Chevron Corp. vs. Exxon Mobil Corp.

Let’s motivate the discussion with an example of a pairs trade in the NYSE stocks Chevron Corp. (CVX) and

Exxon Mobil Corp. (XOM).

◼ We first load daily close prices for the two stocks over the formation period from Jan 2014 to Apr 2015:

CVX = Entity"Financial", "NYSE:CVX"EntityProperty"Financial", "Close",

"Date" → DateObject[{2014, 1, 1}], DateObject[{2015, 4, 30}]

XOM = Entity"Financial", "NYSE:XOM"EntityProperty"Financial", "Close",

"Date" → DateObject[{2014, 1, 1}], DateObject[{2015, 4, 30}]

TimeSeries
Time: 01 Jan 2014 to 30 Apr 2015
Data points: 347 

TimeSeries
Time: 01 Jan 2014 to 30 Apr 2015
Data points: 347 

◼ We plot the two series, from which it is evident that their movements are closely aligned:

DateListPlot[{CVX, XOM}, PlotLegends → {"CVX", "XOM"}]

CVX

XOM

◼ The CVX-XOM pair appears to be a promising candidate for pairs trading, based on the high correlation

between the price series:

Correlation[CVX, XOM]

0.936033

◼ We first extract the prices from the two time series:

cvx = QuantityMagnitude[CVX["Values"]];

xom = QuantityMagnitude[XOM["Values"]];

◼ Then we proceed with a standard Dickey-Fuller unit root test of each price series. The high probability

level of the test statistic indicates that, as expected, we are unable to reject the null hypothesis of a unit root

in the price process for each stock. Hence the prices series are integrated, order 1, as is typically the case

for asset price processes:

UnitRootTest /@ {cvx, xom}

{0.651376, 0.646736}

2.2.1.2 Modeling the Cointegration Relationship
◼ A time series plot of the spread indicates that it is relatively stable over the formation period:

DateListPlot[CVX - XOM]

Jan Jul Jan
0

5

10

15

20

25

30

◼ We fit a linear regression model that relates the price of CVX to XOM, with an estimated beta of 0.606:

2 Quantitative Research and Trading

lm = LinearModelFit[Transpose[{cvx, xom}], x, x]

FittedModel 0.606104 x + 23.9765 

◼ The model prices provide a good fit to the observed prices for CVX:

lm["RSquared"]

0.876158

ListPlotTransposelm"Response", "PredictedResponse",

FrameLabel → "observed", "predicted", Frame → True, Axes → False

85 90 95 100

85

90

95

100

105

observed

pr
ed

ic
te

d

2.2.1.3 Cointegration Test
◼ We now demonstrate that a cointegration relationship exists between CVX and XOM. Firstly, the earlier

Dickey-Fuller tests failed to reject the null hypothesis that the two price series contain a unit root and are

therefore integrated with order 1.

◼ Applying the same test to the model residuals, we reject the null hypothesis of a unit root, confirming that

the residual process is not integrated:

UnitRootTestlm"FitResiduals"

0.00833189

◼ By demonstrating that a linear combination of the nonstationary price series for CVX and XOM is itself not

integrated, we have shown that the series are cointegrated order 1, with cointegrating vector {-1, 0.606}.

2.2.1.4 Modeling the Spread Residuals
◼ We can take the analysis further by fitting an ARMA model to the residuals of the linear model:

Why Statistical Arbitrage Trades Break Down 3

Histogramlm"FitResiduals"

-4 -2 0 2 4
0

10

20

30

40

50

60

70

ListPlotlm"FitResiduals"

50 100 150 200 250 300 350

-4

-2

2

spread = TimeSeriesModelFitlm"FitResiduals"

TimeSeriesModel
Family: ARMA
Order: {1, 1} 

◼ The parameters of the spread ARMA model are given by:

Normal[spread]

ARMAProcess1.766×10-16, {0.975909}, {-0.126808}, 0.324408

◼ Mathematica selects the best-fitting ARMA model based on the Akaike Information Criterion, a standard

measure of goodness-of-fit. The table below lists of all the models considered, together with their AIC:

spread"CandidateSelectionTable"

Candidate AIC
1 ARMAProcess(1, 1) -382.636
2 ARMAProcess(2, 1) -378.435
3 ARMAProcess(1, 2) -376.388
4 ARMAProcess(2, 2) -376.37
5 ARProcess(1) -335.989
6 MAProcess(1) 236.704
7 MAProcess(0) 453.578

4 Quantitative Research and Trading

◼ There are a large number of properties of the selected ARMA model that the analyst can explore and we

will look at one or two of them:

spread"Properties"

ACFPlot, ACFValues, AIC, AICc, BIC, BestFit, BestFitParameters,

CandidateModels, CandidateModelSelectionValues, CandidateSelectionTable,

CandidateSelectionTableEntries, CovarianceMatrix, ErrorVariance,

FitResiduals, ForecastStandardErrors, InformationMatrix,

LjungBoxPlot, LjungBoxValues, ModelFamily, PACFPlot,

PACFValues, ParameterConfidenceIntervals, ParameterTable,

ParameterTableEntries, PredictionLimits, Properties, SBC,

SelectionCriterion, StandardizedResiduals, TemporalData

◼ The ACF plot appears to show no lack of fit in the ARMA model residuals, with insignificant

autocorrelations up to 24 lags:

spread["ACFPlot"]

5 10 15 20 25 30 35

-0.10

-0.05

0.05

0.10

Correlation Function

◼ The LjungBox portmanteau test confirms that there is no evidence of lack of fit in the residual

autocorrelations:

spread"LjungBoxPlot"

2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

Autocorrelation Test

2.2.1.4 Stationarity of the Spread Process

Recall that an ARMA process may or may not be stationary, depending on its autoregressive parameters.

◼ The conditions for stationarity are given by:

Why Statistical Arbitrage Trades Break Down 5

WeakStationarity[ARMAProcess[{α1, α2}, {β1, β2}, ν]]

1 - α2
2 > 0 ∧ 1 - α2

2
2
+ (-α2 α1 - α1) (α2 α1 + α1) > 0

◼ In this case, the spread ARMA model satisfies the conditions for stationarity:

WeakStationarity[Normal[spread]]

True

2.2.1.5 CVX-XOM Pairs Trade: The Story So Far

Our analysis so far appears promising: we have demonstrated that the CVX-XOM price series are not only

highly correlated, but are also cointegrated. Furthermore, we have succeeded in fitting a stationary ARMA

model to the residuals of the linear spread model.

This additional step is helpful because it provides further confirmation of the stability of the spread. But it is

also useful to set the entry/exit levels of the trade. Firstly, the variance of the ARMA model can be used to

determine the levels to go long or short the spread. Alternatively, we can use the ARMA model to make

explicit forecasts, and apply these as entry/exit signals instead.

However, before going any further down this road we should take a look at what actually happened to CVX and

XOM after the formation period, in the ensuing two years from May 2015 to May 2017:

CVXos =

Entity"Financial", "NYSE:CVX"EntityProperty"Financial", "Close",

"Date" → DateObject[{2015, 5, 1}], DateObject[{2017, 5, 31}];

XOMos = Entity"Financial", "NYSE:XOM"

EntityProperty"Financial", "Close",

"Date" → DateObject[{2015, 1, 1}], DateObject[{2017, 5, 31}];

DateListPlot[{CVXos, XOMos}, PlotLegends → {"CVX", "XOM"}]

2015 2016 2017

70

80

90

100

110

120

CVX

XOM

◼ Far from remaining stable at around $20, the CVX-XOM spread first converges almost to zero towards the

end of 2015, then proceeds to widen back to over $30 over the ensuing 18 months.

6 Quantitative Research and Trading

DateListPlot[CVXos - XOMos]

2016 2017
0

5

10

15

20

25

30

◼ A detailed analysis is not required to conclude that the out-of-sample performance of our pairs trade would

have been very poor. Regardless of how we had set the entry/exit levels, the trade would have been

stopped out (probably several times) as the spread first converged to zero and, then widened back out over

the period from 2016-2017.

So what went wrong?

2.2.1.6 The Low Power of Unit Root Tests

The key lesson from this example is that Dickey-Fuller and other unit root tests, on which cointegration analysis

depends, have extremely low power.

◼ To see this, let’s consider a data sample generated from a stationary ARIMA process with a large

autoregressive coefficient of 0.98 at lag 1:

data = RandomFunction[ARIMAProcess[{0.98}, 0, {0.2}, 1], {250}, 1000]

TemporalData
Time: 0 to 250
Data points: 251000 Paths: 1000 

◼ We know that the underlying process is stationary:

WeakStationarity[ARIMAProcess[{0.98}, 0, {0.2}, 1]]

True

◼ If we track the mean of the 1,000 samples generated from the process we can see that, while it wanders

quite far from its starting point, it eventually reverses course and reverts:

Why Statistical Arbitrage Trades Break Down 7

ListLinePlotTimeSeriesThread[Mean, data]

50 100 150 200 250

-0.2

0.2

0.4

◼ However, when we conduct unit root tests on the samples we find that in only 15% of cases do the tests

reject the null hypothesis of a unit root. Put another way, in approximately 85% of cases we would

conclude incorrectly that the process was nonstationary!

HistogramURProbs = UnitRootTest /@ data"ValueList"

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

Count[URProbs, x_ /; x < 0.05]/Length[URProbs] // N

0.151

◼ Now let’s consider the scenario of a nonstationary process, with unit root:

WeakStationarity[ARIMAProcess[{-0.9}, 1, {0.2}, 1]]

False

data = RandomFunction[ARIMAProcess[{-0.9}, 1, {0.2}, 1], {250}, 1000]

TemporalData
Time: 0 to 250
Data points: 251000 Paths: 1000 

◼ This time we see that the mean of the data samples trends away from its initial value, without reverting:

8 Quantitative Research and Trading

ListLinePlotTimeSeriesThread[Mean, data]

50 100 150 200 250

-0.1

0.1

0.2

0.3

0.4

◼ However, when we conduct unit root tests on this data sample we find that in 2/3 of cases the Dickey-Fuller

test rejects the null hypothesis of a unit root, leading to the conclusion that the process is stationary!

HistogramURProbs = UnitRootTest /@ data"ValueList"

0.0 0.1 0.2 0.3 0.4

100

200

300

400

500

600

Count[URProbs, x_ /; x < 0.05]/Length[URProbs] // N

0.667

2.2.1.7 Conclusion

The standard tests used to identify suitable candidates for pairs trades are intrinsically unreliable, and likely to

result in a mis-specification of the underlying stochastic processes. This will result in pairs trades breaking

down frequently, since the fundamental characteristics of the trade are so poorly defined. Consequently,

effective risk controls are vitally important to successful statistical arbitrage and these include, at the very least,

stop loss limit on spread trades that fail to converge within a pre-specified time period.

Why Statistical Arbitrage Trades Break Down 9

