
2.2 Why Statistical Arbitrage Trades Break Down

The  way  a  pairs  trade  is  supposed  to  work  is  that  a  trade  entry  is  signaled  by  a  significant  divergence  in  the

spread between the prices of a correlated pair of stocks.  The higher value stock  is sold while the lower value

stock is purchased, with various schemes used to set the hedge ratio (matching dollar value, or beta-neutral, for

example).   As the spread begins to converge, the higher value stock declines relative to the lower value stock,

yielding a profit on the trade.  The trade is exited when the spread converges to some specified level, typically a

(lower) multiple of its standard deviation. 

One  of  the  risks  of  statistical  arbitrage  strategies  is  that  individual  pairs  trades  break  down  quite  frequently.

Even in a successful  trade the spread will  often continue to diverge before ultimately converging to produce a

overall profit.  But sometimes the trade breaks down altogether - the spread continues to diverge until the mark-

to-market losses force the trader to unwind the position. 

The risk of breakdown in an individual pairs trade is mitigated by trading a large portfolio of pairs, together with

sensible stop-loss limits and risk management protocols.  But the losses on pairs trades that break down can be

painful, especially in periods when several pairs diverge at the same time.

In this section our aim is to understand why this happens and what can be done to mitigate the risk.

2.2.1 Example:  Chevron Corp. vs. Exxon Mobil Corp.

Let’s motivate the discussion with an example of a pairs trade in the NYSE stocks Chevron Corp. (CVX) and

Exxon Mobil Corp. (XOM).

◼ We first load daily close prices for the two stocks over the formation period from Jan 2014 to Apr 2015:

CVX = Entity"Financial", "NYSE:CVX"EntityProperty"Financial", "Close",

"Date" → DateObject[{2014, 1, 1}], DateObject[{2015, 4, 30}]

XOM = Entity"Financial", "NYSE:XOM"EntityProperty"Financial", "Close",

"Date" → DateObject[{2014, 1, 1}], DateObject[{2015, 4, 30}]

TimeSeries
Time: 01 Jan 2014 to 30 Apr 2015
Data points: 347 

TimeSeries
Time: 01 Jan 2014 to 30 Apr 2015
Data points: 347 

◼  We  plot the two series, from which it is evident that their movements are closely aligned:



DateListPlot[{CVX, XOM}, PlotLegends → {"CVX", "XOM"}]
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◼ The CVX-XOM pair appears to be a promising candidate for pairs trading, based on the high correlation 

between the price series:

Correlation[CVX, XOM]

0.936033

◼ We first extract the prices from the two time series: 

cvx = QuantityMagnitude[CVX["Values"]];

xom = QuantityMagnitude[XOM["Values"]];

◼ Then we proceed with a standard Dickey-Fuller unit root test of each price series.  The high probability 

level of the test statistic indicates that, as expected, we are unable to reject the null hypothesis of a unit root 

in the price process for each stock.  Hence the prices series are integrated, order 1, as is typically the case 

for asset price processes:

UnitRootTest /@ {cvx, xom}

{0.651376, 0.646736}

2.2.1.2 Modeling the Cointegration Relationship
◼ A time series plot of the spread indicates that it is relatively stable over the formation period:

DateListPlot[CVX - XOM]
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◼ We fit a linear regression model that relates the price of CVX to XOM, with an estimated beta of 0.606:
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lm = LinearModelFit[Transpose[{cvx, xom}], x, x]

FittedModel 0.606104 x + 23.9765 

◼ The model prices provide a good fit to the observed prices for CVX:

lm["RSquared"]

0.876158

ListPlotTransposelm"Response", "PredictedResponse",

FrameLabel → "observed", "predicted", Frame → True, Axes → False
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2.2.1.3  Cointegration Test
◼ We now demonstrate that a cointegration relationship exists between CVX and XOM.  Firstly, the earlier 

Dickey-Fuller tests failed to reject the null hypothesis that the two price series contain a unit root and are 

therefore integrated with order 1.

◼ Applying the same test to the model residuals, we reject the null hypothesis of a unit root, confirming that 

the residual process is not integrated:

UnitRootTestlm"FitResiduals"

0.00833189

◼ By demonstrating that a linear combination of the nonstationary price series for CVX and XOM is itself not 

integrated, we have shown that the series are cointegrated order 1, with cointegrating vector {-1, 0.606}.

2.2.1.4 Modeling the Spread Residuals
◼ We can take the analysis  further by fitting an ARMA model to the residuals of the linear model:
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Histogramlm"FitResiduals"
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ListPlotlm"FitResiduals"
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spread = TimeSeriesModelFitlm"FitResiduals"

TimeSeriesModel
Family: ARMA
Order: {1, 1} 

◼ The parameters of the spread ARMA model are given by:

Normal[spread]

ARMAProcess1.766×10-16, {0.975909}, {-0.126808}, 0.324408

◼ Mathematica selects the best-fitting ARMA model based on the Akaike Information Criterion, a standard 

measure of goodness-of-fit.  The table below lists of all the models considered, together with their AIC:

spread"CandidateSelectionTable"

Candidate AIC
1 ARMAProcess(1, 1) -382.636
2 ARMAProcess(2, 1) -378.435
3 ARMAProcess(1, 2) -376.388
4 ARMAProcess(2, 2) -376.37
5 ARProcess(1) -335.989
6 MAProcess(1) 236.704
7 MAProcess(0) 453.578
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◼ There are a large number of properties of the selected ARMA model that the analyst can explore and we 

will look at one or two of them:

spread"Properties"

ACFPlot, ACFValues, AIC, AICc, BIC, BestFit, BestFitParameters,

CandidateModels, CandidateModelSelectionValues, CandidateSelectionTable,

CandidateSelectionTableEntries, CovarianceMatrix, ErrorVariance,

FitResiduals, ForecastStandardErrors, InformationMatrix,

LjungBoxPlot, LjungBoxValues, ModelFamily, PACFPlot,

PACFValues, ParameterConfidenceIntervals, ParameterTable,

ParameterTableEntries, PredictionLimits, Properties, SBC,

SelectionCriterion, StandardizedResiduals, TemporalData

◼ The ACF plot appears to show no lack of fit in the ARMA model residuals, with insignificant 

autocorrelations up to 24 lags:

spread["ACFPlot"]
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◼ The LjungBox portmanteau test confirms that there is no evidence of lack of fit in the residual 

autocorrelations:

spread"LjungBoxPlot"
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2.2.1.4 Stationarity of the Spread Process

Recall that an ARMA process may or may not be stationary, depending on its autoregressive parameters. 

◼ The conditions for stationarity are given by:
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WeakStationarity[ARMAProcess[{α1, α2}, {β1, β2}, ν]]

1 - α2
2 > 0 ∧ 1 - α2

2
2
+ (-α2 α1 - α1) (α2 α1 + α1) > 0

◼ In this case, the spread ARMA model satisfies the conditions for stationarity:

WeakStationarity[Normal[spread]]

True

2.2.1.5  CVX-XOM Pairs Trade: The Story So Far

Our  analysis  so  far  appears  promising:   we  have  demonstrated  that  the  CVX-XOM  price  series  are  not  only

highly  correlated,  but  are  also  cointegrated.   Furthermore,  we  have  succeeded  in  fitting  a  stationary  ARMA

model to the residuals of the linear spread model.  

This  additional  step is  helpful  because it  provides further  confirmation of  the stability  of  the spread.   But  it  is

also  useful  to  set  the  entry/exit  levels  of  the  trade.   Firstly,  the  variance  of  the  ARMA model  can  be  used  to

determine  the   levels  to  go  long  or  short  the  spread.   Alternatively,  we  can  use  the  ARMA  model  to  make

explicit  forecasts, and apply these as entry/exit signals instead.

However, before going any further down this road we should take a look at what actually happened to CVX and

XOM after the formation period, in the ensuing two years from May 2015 to May 2017:

CVXos =

Entity"Financial", "NYSE:CVX"EntityProperty"Financial", "Close",

"Date" → DateObject[{2015, 5, 1}], DateObject[{2017, 5, 31}];

XOMos = Entity"Financial", "NYSE:XOM"

EntityProperty"Financial", "Close",

"Date" → DateObject[{2015, 1, 1}], DateObject[{2017, 5, 31}];

DateListPlot[{CVXos, XOMos}, PlotLegends → {"CVX", "XOM"}]
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◼ Far from remaining stable at around $20, the CVX-XOM spread first converges almost to zero towards the 

end of 2015, then proceeds to widen back to over $30 over the ensuing 18 months.  
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DateListPlot[CVXos - XOMos]
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◼ A detailed analysis is not required to conclude that the out-of-sample performance of our pairs trade would 

have been very poor.  Regardless of how we had set the entry/exit levels, the trade would have been 

stopped out (probably several times) as the spread first converged to zero and, then widened back out over 

the period from 2016-2017.  

So what went wrong?

2.2.1.6 The Low Power of Unit Root Tests

The key lesson from this example is that Dickey-Fuller and other unit root tests, on which cointegration analysis

depends, have extremely low power.  

◼ To see this, let’s consider a data sample generated from a stationary ARIMA process with a large 

autoregressive coefficient of 0.98 at lag 1:

data = RandomFunction[ARIMAProcess[{0.98}, 0, {0.2}, 1], {250}, 1000]

TemporalData
Time: 0 to 250
Data points: 251000 Paths: 1000 

◼ We know that the underlying process is stationary:

WeakStationarity[ARIMAProcess[{0.98}, 0, {0.2}, 1]]

True

◼ If we track the mean of the 1,000 samples generated from the process we can see that, while it wanders 

quite far from its starting point, it eventually reverses course and reverts:
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ListLinePlotTimeSeriesThread[Mean, data]
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◼ However, when we conduct unit root tests on the samples we find that in only 15% of cases do the tests 

reject the null hypothesis of a unit root.  Put another way, in approximately 85% of cases we would 

conclude incorrectly that the process was nonstationary!

HistogramURProbs = UnitRootTest /@ data"ValueList"
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Count[URProbs, x_ /; x < 0.05]/Length[URProbs] // N

0.151

◼ Now let’s consider the scenario of a nonstationary process, with unit root:

WeakStationarity[ARIMAProcess[{-0.9}, 1, {0.2}, 1]]

False

data = RandomFunction[ARIMAProcess[{-0.9}, 1, {0.2}, 1], {250}, 1000]

TemporalData
Time: 0 to 250
Data points: 251000 Paths: 1000 

◼ This time we see that the mean of the data samples trends away from its initial value, without reverting:
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ListLinePlotTimeSeriesThread[Mean, data]
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◼ However, when we conduct unit root tests on this data sample we find that in 2/3 of cases the Dickey-Fuller 

test rejects the null hypothesis of a unit root, leading to the conclusion that the process is stationary!

HistogramURProbs = UnitRootTest /@ data"ValueList"
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Count[URProbs, x_ /; x < 0.05]/Length[URProbs] // N

0.667

2.2.1.7  Conclusion 

The standard tests used to identify suitable candidates for pairs trades are intrinsically unreliable,  and likely to

result  in  a  mis-specification  of  the  underlying  stochastic  processes.   This  will  result  in  pairs  trades  breaking

down  frequently,  since  the  fundamental  characteristics  of  the  trade  are  so  poorly  defined.   Consequently,

effective risk controls are vitally important to successful statistical arbitrage and these include, at the very least,

stop loss limit on spread trades that fail to converge within a pre-specified time period.
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